I like to study objects such as the multiplicative group over a number field, the points of an elliptic curve over a number field, and Drinfeld modules (and other related objects).

Especially, I like to study analogues of Artin’s conjecture for the above objects.

Publications

  1. Artin’s conjecture for Drinfeld modules, with Wentang Kuo. Algebra and Number Theory, Vol. 16 (2022), No. 5, 1025-1070. DOI: 10.2140/ant.2022.16.1025, Accepted version
  2. Cyclicity for Drinfeld modules, with Wentang Kuo. Bulletin of the London Mathematical Society, (2021), 53: 1500-1519. Article link
  3. A prime analogue Erdős-Pomerance result for Drinfeld modules with arbitrary endomorphism rings, with Wentang Kuo. Proc. Amer. Math. Soc. 148 (2020), no. 9, 3733–3747. Journal website. Article link.
  4. Primitive submodules for Drinfeld modules, with Wentang Kuo. ©Cambridge Philosophical Society (2015). Math. Proc. Cambridge Philos. Soc. 159(2015), no. 2, 275–302. Journal website. Article link.
  5. The Lang-Trotter conjecture for Drinfeld modules. Ph.D. thesis. University of Waterloo, (2011). Link to thesis.
  6. Beta-expansions for infinite families of Pisot and Salem numbers, with Kevin Hare. J. Number Theory 128(2008), no. 9, 2756–2765. Journal website.