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Abstract. Let k be a global function field, and let A be the elements of k
regular outside a fixed place ∞.

Let φ : A → K{τ} be a Drinfeld module of generic characteristic and
rank n. For a prime ℘ of K of good reduction, let F℘ be the residue field at
℘, and let χA

(
φ(F℘)

)
be the Euler-Poincaré characteristic of F℘ viewed as an

A-module.

We determine the normal order of the number of distinct prime ideals of

A dividing χA

(
φ(F℘)

)
, denoted by ωA

(
χA

(
φ(F℘)

))
, as ℘ runs over primes

of K of degree x with a specified splitting behaviour.

Furthermore, let a ∈ K be non-torsion for φ, and let fa(℘) be the Euler-
Poincaré characteristic of the submodule of φ(F℘) generated by a modulo ℘.
We also consider the problem of determining the distribution of ωA

(
fa(℘)

)
as

℘ runs over primes of K of degree x with a specified splitting behaviour.

Note that we do not make restrictions on A, φ, or its endomorphism ring
EndKsep(φ).

1. Introduction

Consider ω(n), the number of distinct prime divisors of a positive integer n. In
1934, Turán [30] proved that∑

n≤x

(ω(n)− log log x)2 � x log log x

as x → ∞.
This implies the earlier result of Hardy and Ramanujan [13] that for all ε > 0

#{n ≤ x | |ω(n)− log log(n)| > ε log log n} = o(x)

as x → ∞, where #S means the number of elements of the set S.
Now, let

G(u) =
1√
2π

u∫
−∞

e−t2/2 dt

be the cumulative distribution function of the normal distribution with mean 0 and
standard deviation 1.
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This probabilistic study of arithmetical functions led Erdős and Kac [8] to prove
that ω(n) satisfies

lim
x→∞

1

x
#

{
n ≤ x

∣∣∣ ω(n)− log log n√
log log n

≤ u

}
= G(u).

The study of arithmetical functions using probabilistic ideas, called probabilistic
number theory, eventually yielded a generalised Erdős-Kac theorem, which was
discovered independently by Kubilius [17] and Shapiro [28]. The interested reader
can review Elliott’s monograph [4, 5].

Returning to Turán’s result, Erdős [7] proved that∑
p≤x

(ω(p− 1)− log log x)2 � π(x) log log x

as x → ∞. This is a prime analogue of Turán’s result. Naturally, one then tries to
determine the distribution of ω(p− 1).

Halberstam in [12] proved that

lim
x→∞

1

π(x)
#

{
p ≤ x

∣∣∣ ω(p− 1)− log log x√
log log x

≤ u

}
= G(u),

by considering the moments of ω(p− 1).
Informally, the number of distinct prime factors of p − 1 for p ≤ x follows a

normal distribution with mean log log x and standard deviation
√
log log x.

If we write p − 1 = #F∗
p, then we see that Erdős and Halberstam are studying

the distribution of ω(#F∗
p) as p varies. This may be generalised in several different

ways. One consideration is to replace p− 1 with ϕ(n). Note that the framework of
Kubilius and Shapiro does not apply here. But nonetheless, Erdős and Pomerance
in [6] showed that

lim
x→∞

1

x
#

{
n ≤ x

∣∣∣∣ ω
(
ϕ(n)

)
− (1/2)(log log x)2

(1/
√
3)(log log x)3/2

≤ u

}
= G(u).

But there are other fruitful investigations. In particular, think of F∗
p as the Fp

points of the multiplicative group. Then replace the multiplicative group with an-
other algebraic group (see especially [15] for a helpful framework). To motivate our
study, let E/Q be an elliptic curve defined over the rationals. Then we may try to
determine the normal order of Np = #E(Fp) for primes p ≤ x. On the generalized
Riemann hypothesis (GRH) and assuming E has no complex multiplication, Miri
and Murty [24] established that∑

p≤x

(ω(Np)− log log x)2 � π(x) log log x.

Then if E has complex multiplication, Liu [22] proved (unconditionally) that∑
p≤x

(ω(Np)− log log x)2 � π(x) log log x

and then further established the Erdős-Kac type result [23] (on the GRH if E does
not have complex multiplication)

lim
x→∞

1

π(x)
#

{
p ≤ x

∣∣∣ ω(Np)− log log x√
log log x

≤ u

}
= G(u).
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AN ERDŐS-POMERANCE RESULT FOR DRINFELD MODULES 3735

The goal of this paper is to prove a Drinfeld module analogue to the above
result in the case of non-trivial endomorphism ring. This is an analogue to the
above theorem for elliptic curves with complex multiplication established by Liu.
Once this is done, we will also prove an Erdős-Pomerance type result. This is a
generalization of the work of the first author with Kuan and Yao [16].

We will now introduce the notation that we need for our main theorems.

2. Notation

Let r be a prime power, and let Fr be the finite field with r elements. Let X be
a smooth, projective curve over Fr with a closed point ∞, and let A be the ring
of functions on X regular everywhere, except perhaps ∞. Let K be an A-field of
generic characteristic, and denote the corresponding copy of A inside K by A.

The fraction field of A will be k, and so K/k is a field extension. Assume that
K/k is a finite extension, in particular, K is a global function field. Fix a separable
closure Ksep of K. Let φ : A → K{τ} be a Drinfeld module of rank n. Let
B = EndKsep(φ) be the endomorphism ring of φ. There exists a finite extension
K ′/K such that B ⊆ K ′{τ}, and let ψ : B → K ′{τ} be the Drinfeld module
of rank n′ given by inclusion, where n = n′v. In fact, strictly speaking ψ is not
necessarily a Drinfeld module as B may not be the ring of integers of A in B⊗A k.
See [11, Proposition 4.7.19].

For a place ℘ of K, either ℘ lies over the place ∞ of k (in which case we say that
℘ is an infinite place) or else it lies over a finite place of k, which then corresponds
to a prime ideal p of A. Let O℘ be the local ring corresponding to ℘ with m℘ its
maximal ideal and F℘ the residue field. If there exists u ∈ K so that for all a ∈ A,
ρa has all coefficients in O℘ and leading coefficient in O℘ −m℘ where ρ = uφu−1,
then we say that φ has good reduction at ℘. Clearly, φ has good reduction at all
but finitely many places ℘, and only finitely many of those require u 
= 1.

The A-characteristic of F℘ will be denoted by p. For an A-module N of finite
length, let χA(N) denote the Euler-Poincaré characteristic of N . Recall that χA(·)
is determined by the two properties that χA(A/I) = I for all ideals I ⊆ A, and
χA(M) = χA(N)χA(N ′) if there is an exact sequence of A-modules

0 → N → M → N ′ → 0.

Notice that if we consider χ = χZ, then χ
(
E(Fp)

)
=
(
Np

)
, where

(
Np

)
is the

principal ideal of Z generated byNp = #E(Fp). So, χA

(
φ(F℘)

)
is a natural Drinfeld

module analogue to Np = #E(Fp).
To demonstrate the analogy further, recall Taelman’s seminal work [29], in which

he proves a class number formula for Drinfeld modules. For an A-module M , let

|M | be a monic generator of χA(M). Then define L(φ/A) =
∏

p

|A/p|
|φ(A/p)| . Taelman

then proves a formula for L(φ/A) in terms of a certain regulator and a class module.
Of course, there have since been many developments. For example, see [1].

We now turn our attention back to Erdős-Kac type results.
For an ideal a of A, denote by ωA(a) the number of distinct prime ideals di-

viding a. In this paper, we consider the distribution of ωA

(
χA

(
φ(F℘)

))
as ℘ runs

over primes of K of degree x (where x becomes large).
Assume that A = Fq[T ], let K = Fq(T ), and assume that EndKsep(φ) = A. The

following theorem was proved by Liu and the first author [19] in the case that φ is
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the Carlitz module, and generalised to the case that the rank of φ is arbitrary by
Liu and the first author [20] and independently by Cojocaru [2].

Theorem 2.1. Assume that A = Fq[T ], B = A, and K = Fq(T ). Then∑
deg℘≤x

(
ωA

(
χA

(
φ(F℘)

))
− log x

)2
� πK(x) log x.

So the first goal of this paper is to remove the restriction that A = Fq[T ], and
remove the restriction that End(φ) = A. In fact, it is the latter condition which is
non-trivial.

We will now state the first main result of our paper. Let c ⊆ Gal(K ′/K) be a
fixed conjugacy class. Fix g ∈ c, and let E ⊆ K ′ be such that Gal(K ′/E) = 〈g〉.
Let j(K), j(E), and j(K ′) denote the degrees of the constant fields of K, E, and
K ′ over Fq. Define

P(K, c, x) = {℘ a place of K | deg℘ = x, (℘,K ′/K) = c}.

Theorem 2.2. As x ≡ j(E) mod j(K ′) and x → ∞,

lim
x→∞

1

#P(K, c, x)

⎧⎨
⎩℘ ∈ P(K, c, x)

∣∣∣ ωA

(
χA

(
φ(F℘)

))
− log x

√
log x

≤ u

⎫⎬
⎭ = G(u).

Remark 2.3. A brief word on the integers j(E) and j(K ′). They represent the
possibility that part of the extension K ′/K may be a constant field extension. In
previous works [2, 16, 19, 20], it was assumed that K ′ = K and so this possibility
could not occur.

Now, fix a ∈ K any non-torsion point for φ, and let fa(℘) denote the Euler-
Poincaré characteristic of the submodule of φ(F℘) generated by a. The following is
a generalization of part of the work of the first author and Kuan and Yao in [16].

Theorem 2.4. As x ≡ j(E) mod j(K ′) and x → ∞,

lim
x→∞

1

#P(K, c, x)

{
℘ ∈ P(K, c, x)

∣∣∣ ωA

(
fa(℘)

)
− log x√

log x
≤ u

}
= G(u).

We first show in Section 3 that if k is the fraction field of A, EndK(φ) = A′ with
k′ the fraction field ofA′, and l the fraction field ofB, then Gal(K ′/K) ∼= Gal(l/k′).
Of course, k ⊆ k′ can be almost arbitrary (in particular, it may be completely
inseparable, and it may not be a normal extension).

First, we choose g ∈ c, and let E be the fixed field of 〈g〉 ⊆ Gal(K ′/K). Let
E ⊆ � be the subfield such that Gal(�/E) = 〈g〉. Let A′ = E ∩ B, and let φ′ :
A′ → E{τ} be the corresponding Drinfeld module. Let q be a prime of A′, and let
Cq ⊆ Gal(K ′(φ′[q])/E) comprise those σ such that σ|K′ = g and σλ = λ for some
0 
= λ ∈ φ′[q]. We are able to compute the size of Cq relative to [K ′(φ′[q]) : E].

In Section 4, we are able to estimate the number of primes ℘′ of E such that
(℘′,K ′/E) = g, and such that q divides the Euler-Poincaré characteristic of φ′(F℘′)
using the Chebotarev density theorem.

Then we are able to show that the main contribution to the average value of

ωA

(
χA

(
φ(F℘)

))
as (℘,K ′/K) = c comes from primes of A′. We may compare

this to the work of Liu in [23]. In Liu’s work, all primes contribute equally to the
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average value of ω
(
#E(Fp)

)
as p ranges over primes of supersingular reduction.

This is comparable to the case when E = K. In [23], only primes which are split
contribute to ω

(
#E(Fp)

)
as p ranges over primes which have ordinary reduction.

This is analogous to the case where E = K ′ for our situation. Furthermore, for
Drinfeld modules, only the case that K ′ = K has been done before (see [20] and
[2]). In our work, there are many “in between” situations which are not covered by
the two extreme cases of completely inert and completely split. Yet we are able to
dispose of all the different situations at once.

In Section 5, we are able to determine the distribution of ωA

(
χA

(
φ(F℘)

))
as

deg℘ = x and (℘,K ′/K) = c. In Section 6, we generalise the work of [16] using the
considerations of the previous sections as well as work contained mostly in [18].

3. Galois theory considerations

Let us fix g ∈ Gal(K ′/K), and let E be the subfield of K ′ so that Gal(K ′/E)
is generated by g. Corresponding to each field K ′, E, K are the endomorphism
rings B = EndK′(φ), A′ = EndE(φ), EndK(φ) ⊇ A. Corresponding to each
endomorphism ring are the fields l = B⊗Ak, E = A′⊗Ak, and k′ = EndK(φ)⊗Ak.

The following diagram shows the relationship between the different endomor-
phism rings, their fraction fields (in bold face), and their fields of definition. The
dotted lines represent the computation of Galois groups which will be tackled in
Proposition 3.1.

l K ′ B = EndK′(φ) K ′{τ} rank = n′

E E A′ = EndE(φ) E{τ} rank = n′[l : E]

k′ K EndK(φ) K{τ} rank = n′[l : k′]

k K A K{τ} rank = n = n′v

ψ

g g

φ′
G G

v

φ

Proposition 3.1. Let φ : A → K{τ} be a Drinfeld module. Let k be the fraction
field of A. Let EndK(φ) be the ring of endomorphisms defined over K, and let
k′ = EndK(φ)⊗A k. Similarly, let EndKsep(φ) = B, and let l = B⊗A k.

Then k′ ⊆ l is a Galois extension. Furthermore, there exists a field K ′ such that
Gal(l/k′) ∼= Gal(K ′/K) and B = EndK′(φ).

Proof. First, check that Gal(Ksep/K) acts on B ⊆ Ksep{τ} (by acting on the
coefficients) while fixing EndK(φ). Then check that this defines a homomorphism
ρ : Gal(Ksep/K) → Aut(l/k′). The image of this homomorphism must be of
the form Gal(l/F ). Then notice that elements of F ∩ B are fixed by all σ ∈
Gal(Ksep/K), and hence F ∩B ⊆ K{τ}, which implies that F = k′, as required.
Then find K ′ such that ρ : Gal(K ′/K) → Gal(l/k′) is an isomorphism. Necessarily,
B = EndK′(φ). �
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Remark 3.2. We have three Drinfeld modules appearing, φ : A → K{τ}, φ′ : A′ →
E{τ}, and ψ : B → K ′{τ}. The Drinfeld module ψ is the “full CM” Drinfeld
module. If we want to apply the open image theorem of Pink and Rütsche [26],
we can only apply it to ψ. The Drinfeld module φ′ is a bridge between φ and ψ.
What will happen is that ℘ will be a prime of K such that (℘,K ′/K) = c, ℘′ will
be a prime of E such that (℘′,K ′/E) = g, and so the structure of φ(F℘) as an
A-module will just be the restriction of the A′-module structure of φ′(F℘′), since
F℘

∼= F℘′ as fields. Then we will be in the very specialised situation of Gal(K ′/E)
being generated by g and in this situation we are able to bridge the gap between
φ′ and ψ using semilinear algebra considerations.

Let us proceed with the technical details.
Let q be a prime of A′. Let Kq = K ′(φ′[q]). We must construct a certain

conjugacy class Cq and estimate its size relative to [Kq : E].
Recall that Gal(K ′/E) is a cyclic group generated by g. Let f be the order of g.

Let j(K ′) denote the degree of the constant field of K ′ over Fr, and similarly for
j(E) and j(K).

Factorise qB as qB = Q1 · · ·Qs. Let u be the inertial degree u = [B/Q1 : A′/q]
and note that su = f . Furthermore, we may reorder Q1, . . . ,Qs such that g(Q1) =
Q2, g(Q2) = Q3, . . ., g(Qs−1) = Qs since g generates the Galois group Gal(l/k′)
and this Galois group must permute the primes lying above q transitively. Now,
we also see that we may identify

B/Q1

g∼= B/Q2

g∼= · · ·
g∼= B/Qs

as

x+Qi �→ g(x) + g(Qi) = g(x) +Qi+1.

Finally, if we suppose that we extend g to an element g′ ∈ Gal(Ksep/E) whose
restriction to K ′ is g, then we may also use g′ to identify

ψ[Q1]
g′

∼= ψ[Q2]
g′

∼= · · ·
g′

∼= ψ[Qs]

as B/Qi-modules in a way that agrees with the above identification. This identifi-
cation is achieved by noting that

g′
(
ψb(λ)

)
= ψg(b)

(
g′(λ)

)
for all b ∈ B.

Recall the following consequence of the open image theorem of Pink and Rütsche.

Theorem 3.3 ([26, Theorem 0.1]). There exists an element M ∈ A′ such that if
a is an ideal of A′ and gcd(a,M) = 1, then

Gal(Ka/K
′) ∼= GLn′(B/aB)

and Ka/K
′ is a geometric extension (i.e., the field of constants of Ka is equal to

the field of constants of K ′).

Remark 3.4. Recall that n′ is the rank of ψ : B → K ′{τ}, so that ψ[aB] ∼= (B/aB)n
′

as B-modules.

Remark 3.5. If M ∈ A′ satisfies the statement of Theorem 3.3, then so does any
M ′ such that M |M ′. Therefore, we may replace M with M ′ if necessary. We will
be thinking of M as an element whose divisors are all the “bad” primes of A′. If
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we ever need to exclude a prime q from consideration, we can simply replace M by
xM , where 0 
= x ∈ q.

Proposition 3.6. Recall that g is a generator of Gal(K ′/E) and let λ1, . . . , λn′

be a basis of φ′[q] as a B/qB-module. Suppose that gcd(q,M) = 1. Then we can
choose an extension of g, say g′ ∈ Gal(Ksep/E), so that g′(λi) = λi.

Proof. Let h ∈ Gal(Ksep/E) be such that h|K′ = g. In general if g′|K′ equals g,
then T = g′h−1 is a B/qB-linear operator on φ′[q]. It is clear that {h(λi)} is a
basis of φ′[q] if {λi} is a basis of φ[q].

By the open image theorem proved by Pink and Rütsche in [26], choose g′ ∈
Gal(Ksep/E) such that U = g′h−1 when restricted to φ′[q] is the change of basis
from {h(λi)} to {λi}. Now g′(λi) = λi, as required. �

Remark 3.7. Compare the above proposition to [3] and [21] (in which the field
of coefficients is an algebraically closed field). The main difference is that in our
situation not all g-semilinear operators may be viewed as Frobenius operators. In
fact, the g′ we produce has the property that (g′)k is the identity in Gal(Kq/E).

Corollary 3.8. Suppose that gcd(q,M) = 1. Then Gal(Kq/K
′) is isomorphic to

GLn′(B/qB). Furthermore,

Gal(Kq/E) ∼= Gal(Kq/K
′)�Gal(K ′/E).

We now construct the conjugacy class Cq and our goal is to find its size relative
to [Kq : E].

Let Cq ⊆ Gal(Kq/E) consist of those σ such that σ|K′ = g, and such that
σ(λ) = λ for some 0 
= λ ∈ φ′[q].

Therefore, for a square-free ideal n of A′, let Cn =
∏

Cq ⊆ (
∏

Gal(Kq/K
′)) �

Gal(K ′/E). Furthermore, we will assume that gcd(n,M) = 1.

Proposition 3.9. Suppose that σ ∈ Gal(Kq/E) and σ|K′ = g. Let h = gs so that
σs|K′ = h. Recall that

φ′[q] = ψ[Q1]⊕ · · · ⊕ ψ[Qs].

Then σ(λ) = λ for some 0 
= λ ∈ φ′[q] if and only if σs(λ1) = λ1 for some
0 
= λ1 ∈ ψ[Q1].

Proof. Suppose now 0 
= λ ∈ φ′[q] and σλ = λ. Write λ = λ1 + λ2 + · · · + λs

according to the decomposition φ′[q] = ψ[Q1] ⊕ ψ[Q2] ⊕ · · · ⊕ ψ[Qs]. Notice that
σλ1 = λ2, σλ2 = λ3, . . ., σλs = λ1. It follows that σ

sλ1 = λ1 and also if σsλ1 = λ1

for some 0 
= λ1 ∈ ψ[Q1], then σλ = λ, where λ = λ1 + σλ1 + · · ·+ σs−1λ1. �

Notice that h must be the Frobenius automorphism of B/Q1 over A′/q and σs

is an h-semilinear operator on ψ[Q1].

Proposition 3.10. Write σ = Tg, where T : φ′[q] → φ′[q] is B-linear, and write
σs = Uh, where U : ψ[Q1] → ψ[Q1] is B-linear. Then decompose T = T1⊕· · ·⊕Ts

and set T ′
s = gTsg

−1, T ′
s−1 = g2Ts−1g

−2, . . ., T ′
2 = gs−1T2g

−s+1 (in fact, it is more

accurate to write T ′
i = hg−(i−1)Tig

i−1h−1). Then

U = T1T
′
sT

′
s−1 · · ·T ′

2.

In particular, if U is fixed, then there are |GLn′(B/Q1)|s−1 elements σ of
Gal(Kq/E) such that σ|K′ = g and σs = Uh.
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Proof. Notice that Uh = σs and T1T
′
s · · ·T ′

2h = σs. Furthermore, in the equation

U = T1T
′
s · · ·T ′

2

any choice of s of the variables determines the last. �

Now it remains to calculate the number of U ∈ Gal(KQ1
/K ′) such that Uhλ = λ

for some 0 
= λ ∈ ψ[Q1].

(1) F — the field A′/q, a finite field with q elements.
(2) K — the field B/Q1, a field extension of F of degree u.
(3) V — ψ[Q1], a K-vector space of dimension n′.
(4) h — the Frobenius of K/F, extended to V by choosing a basis to be fixed

by h. Note that in this situation, V may be identified with a field extension
of K, and h a Frobenius operator on V (see [3]).

(5) G = GL(V ) — the K-linear invertible transformations from V to V .
(6) C ⊆ G — the elements U ∈ G, such that L = Uh has ker(L− 1) 
= 0.

Proposition 3.11. We have

|C|/|G| =
n′∑
j=1

(−1)j−1

(q − 1)(q2 − 1) · · · (qj − 1)
.

Proof. In the above situation, L is an F-linear operator on V . So the space W =
ker(L− 1) is an F-subspace of V . But notice that if v ∈ V is such that L(v) = v,
and a ∈ K, we have L(av) = h(a)v. In particular, K ·W ∼= K⊗F W . Furthermore,
any linearly independent subset (over F) of W is linearly independent over K.

Define X to be a partially ordered set where each element W of X is an F-vector
subspace of V , such that KW ∼= K ⊗F W . If W ∈ X , then any subspace of W is
also an element of X , and W ≤ W ′ if and only if W ⊆ W ′.

Define μ(W,W ′) to be the Möbius function on the partially ordered set defined
above (see [27]). In fact, it is clear that if W ≤ W ′, then there exists W ′′ such that
W ′ = W ⊕W ′′ and so μ(W,W ′) = μ(0,W ′′).

In particlar, if dim(W ′′) = j, the following is due to Hall (see [27, Example 2,
p. 351]):

μ(0,W ′′) = (−1)jq(
j
2).

So, we have established that μ(W,W ′) = (−1)jq(
j
2), where j = dim(W ′) −

dim(W ).
Now, define N(0) to be #{U ∈ G | ker(Uh − 1) = 0}. The ratio we are to

investigate is then given by
|C|
|G| = 1− N(0)

|G|
and N(0) is given by Möbius inversion ([27, Proposition 2]),

N(0)

|G| =
∑
W

μ(0,W )
M(W )

|G| ,

where M(W ) = #{U ∈ G | W ⊆ ker(Uh− 1)}.
If j = dim(W ), then

M(W ) = (Qn′ −Qj)(Qn′ −Qn′−j+1) · · · (Qn′ −Qn′−1),

where Q = qu and n′ = dim(V ).
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The number of subspaces W ∈ X with dim(W ) = j is (Qn′ − 1)(Qn′ − Q) · · ·
(Qn′ −Qj−1) · (qj − 1)−1(qj − q)−1 · · · (qj − qj−1)−1.

Now the sum occurring in N(0)/|G| over W with dim(W ) = j is

(−1)j
(Qn′ − 1) · · · (Qn′ −Qj−1)

(qj − 1) · · · (qj − qj−1)
· (Qn′ −Qj) · · · (Qn′ −Qn′−1)q(

j
2)

· 1

(Qn′ − 1) · · · (Qn′ −Qn′−1)
,

which simplifies to

(−1)j
1

(qj − 1)(qj−1 − 1) · · · (q − 1)
. �

Proposition 3.12. For square-free ideals N of A′, define λ(N) so that

|CN|
|Gal(KN/E)| = λ(N)

1

[K ′ : E]
.

Suppose N is prime to M ; then λ(N) =
∏

q|N λ(q). Furthermore, if q is a prime

ideal not dividing M , then

1

rdeg q − 1
− 1

(rdeg q − 1)(r2deg q − 1)
≤ λ(q) ≤ 1

rdeg q − 1
.

Proof. Apply Proposition 3.11. �

4. Application of the Chebotarev density theorem

Let P(E, g, x) be the set of places of E of degree x such that (℘′,K ′/E) = g
(this makes sense as Gal(K ′/E) is a cyclic group).

Let F = {X �→ Xrdeg℘} be the Frobenius map corresponding to F℘. Let
f℘(X) ∈ A[X] be the characteristic polynomial of F , and let g℘′(X) ∈ A′[X]
be the characteristic polynomial of F (as an endomorphism of φ′). Given that
(℘′,K ′/E) = g, let ℘′′ be the prime of K ′ lying above ℘′, let F s be the Frobenius
map corresponding to ℘′′, and let h℘′′(X) ∈ B[X] be its characteristic polynomial.

Now for an ideal N of A′ define

π(E,N, g, x) = #{℘′ ∈ P(E, g, x) : N|g℘′(1)A′}.

Let πE(x) denote the number of places ℘′ of E of degree x.
Then working through [9, Lemma 6.4.8] (see also [14]), we are able to estimate

π(E,N, g, x) in terms of πE(x).

Proposition 4.1. For a square-free ideal N of A′, we have

π(E,N, g, x) =
|CN|

[KN : E]
πE(x) + O(|CN| degNrx/2)

as x → ∞ and x ≡ j(E) mod j(K ′) and π(E,N, g, x) = 0 if x 
≡ j(E) mod j(K ′).

Proof. Note that the degree of the different divisor of KN/E is bounded by a con-
stant times degN[KN : E] (see [10]). Then apply the Chebotarev density theorem
[9, Lemma 6.4.8] to obtain the result as given. �
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Proposition 4.2. Let N be a square-free ideal of A′. Then

π(E,N, g, x) =
1

[K ′ : E]
λ(N)

rx

x
+O(rx/2r(n·n

′−1) degN degN)

as x ≡ j(E) mod j(K ′) and x → ∞.

Proof. Apply Propositions 4.1 and 3.12. �

In fact, h℘′′(Xs) = g℘′(X), and for all a ∈ A, NE/k

(
g℘′(a)

)
= f℘(a). In

particular, NE/k

(
g℘′(1)

)
= f℘(1).

For an A-module N , let χA(N) be the Euler-Poincaré characteristic of N . We
have that (see [11, Proposition 4.12.21])

χA

(
φ(F℘)

)
= f℘(1)A.

Let P(K, c, x) be the set of places ℘ of K of degree x such that (℘,K ′/K) = c.
Now for an ideal N of A define

π(K,N, c, x) = #{℘ ∈ P(K, c, x) : N |f℘(1)A}.

Proposition 4.3. Let Q be a prime of A, and let q1, . . . , q� be the primes of A′

such that NE/k(qi) = Q. Then

[CG(g) : 〈g〉]π(K,Q, c, x) =
�∑

i=1

π(E, qi, g, x) + O(rx/2) + O(rx−2 degQ)

as x → ∞. If � = 0, that is, every prime of A′ lying above Q has inertial degree
greater than 1, then take the right-hand side to be O(rx/2) + O(rx−2 degQ) instead.

Proof. The number of primes ℘′ of E lying above ℘ with (℘′,K ′/E) = g is exactly
equal to [CG(g) : 〈g〉]. Furthermore, qi divides g℘′(1)A′ if and only if Q = NE/k(qi)
divides f℘(1)A. This holds for each qi lying above Q.

The difference of [CG(g) : 〈g〉]π(K,Q, c, x)−
∑�

i=1 π(E, qi, g, x) is bounded by the
sum of the number of primes ℘′ of E such that deg℘ = x, but with inertia degree
≥ 2, plus the number of primes ℘′ counted by π(E, qiqj , g, x) plus the number of
primes ℘′ counted by π(E,Q, g, x), where Q has inertial degree greater than 1 over
Q. It is elementary that the first of these sums is O(rx/2), while Proposition 4.2
bounds the latter two errors by O(rx−2 degQ). �

5. Erdős-Kac type results

In this section we extend the results of [2] and [20] to the case when A 
= Fr[T ],
and we also include the possibility that the endomorphism ring is non-trivial.

Let Q(A′, g, y) be the set of all primes q of A′ such that NormE/k(q) = Q is a
prime of A, gcd(q,M) = 1, and such that deg q ≤ y. Let FrJ be the constant field
of A′.

For each ideal I ⊆ A, define ωy,1,g(I) to be the number of divisors of I which
are norms of elements of Q(A′, g, y) weighted as follows:

ωy,1,g(I) =
1

[CG(g) : 〈g〉]
#{q ∈ Q(A, g, y) | NormE/k(q)|I}.

If f : P(K, c, x) → C, define EK,c,x(f) =
1

#P(K,c,x)

∑
℘∈P(K,c,x) f(℘).
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AN ERDŐS-POMERANCE RESULT FOR DRINFELD MODULES 3743

Proposition 5.1. Let y = x/ log x. Then

EK,c,x

⎛
⎝
∣∣∣∣∣∣
ωA

(
χA

(
φ(F℘)

))
− ωy,1,g

(
χA

(
φ(F℘)

))
√
log x

∣∣∣∣∣∣
⎞
⎠→ 0

as x → ∞.

Proof. For each prime Q of A, define SQ to be the number of ℘ ∈ P(K, c, x) such
that Q|χA

(
φ(F℘)

)
. Now choose β such that 0 < β ≤ 1

2n·n′ . Let Σ =
∑

degQ>βx SQ,

Σ′ =
∑

y<degQ≤βx SQ, and we are to bound∑
℘∈P(K,c,x)

(
ωA

(
χA

(
φ(F℘)

))
− ωy,1,g

(
χA

(
φ(F℘)

)))
≤ Σ+ Σ′.

First, let us bound Σ. It is elementary that

Σ � #P(K, c, x).

Now split Σ′ = S1 + S2, where S1 is the sum of SQ where y < degQ ≤ βx and
there exists a prime Q of A′ such that Q = NormE/k(Q), and S2 is the sum of SQ

where degQ ≤ βx and Q2 divides NormE/K(Q) for all Q lying above Q.
Applying Proposition 4.2 in the case that � = 0,

S2 �
∑

degQ≤βx r
x−2 degQ/x

≤ (rx/x)
∑

m<βx r
−2mrm � rx/x

which is � #P(K, c, x) as x → ∞.
For S1 we use Proposition 4.2 to obtain

S1 �
∑

y<m≤βx

(rx−m/x)(rm/m) � (rx/x) log log x.

The result follows. �

Once we have reduced ourselves to the consideration of ωy,1,g , the remainder of
the section is routine application of the theory in [23].

For q ∈ Q(A′, g, y), define a random variable Vq to be 1 with probability λ(q)
and 0 with probability 1− λ(q). Define Sy =

∑
q∈Q(A′,g,y) Vq.

Proposition 5.2.

E[Sy] = log x+O(log log x),

Var[Sy] = log x+O(log log x).

Proof. Let FqJ be the constant field of E, the number of q ∈ Q(A′, g, y) with

deg q = j is Jrj/j if J |j. Therefore,

E[Sy] =
∑

j≡0 mod J
j<y

J(rj/j)(rj − 1)−1 +O(r−j/2)

= log(y) + O(1),

using the bound that |λQ − (rdegQ − 1)−1| ≤ (rdegQ − 1)−2.
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Similarly,

Var[Sy] =
∑

j≡0 mod J
j<y

J(rj/j)
(
(rj − 1)−1 − (rj − 1)−2

)
+O(r−j/2)

= log y +O(1).

Now, write log y = log x− log log x to complete the proof. �

Proposition 5.3. For s ∈ N, we have supx

∣∣∣∣E
[(

Sy−E[Sy]√
Var[Sy]

)s]∣∣∣∣ < ∞. Therefore,

Sy is normally distributed with mean E[Sy] and standard deviation
√
Var[Sy].

Proof. The proof is contained in [22, Lemma 7]. �

Proposition 5.4. For all s ∈ N,

lim
x→∞

∣∣∣∣∣∣E
[(

Sy − E[Sy]√
Var[Sy]

)s]
− EK,c,x

⎡
⎣
⎛
⎝ωy,1,g

(
χA

(
φ(F℘)

))
− E[Sy]√

Var[Sy]

⎞
⎠

s⎤
⎦
∣∣∣∣∣∣ = 0.

Proof. The proof boils down to showing that for primes q1, q2, . . . , q� ∈ Q(A′, g, y)
and for N = q1 · · · q�, we have that

E[Vq1
Vq2

· · ·Vq�
]− π(E,N, g, x) = O(r(degN)(n·n′−1) degNr−x/2),

which follows from Proposition 4.2. �

Now, we can prove that the number of prime divisors of the Euler-Poincaré
characteristic of φ(F℘) is normally distributed. Recall that

G(u) =
1√
2π

u∫
−∞

e−t2/2 dt

is the cumulative distribution function of the normal distribution with mean 0 and
standard deviation 1.

Theorem 5.5.

lim
x→∞

1

#P(K, c, x)
#

⎧⎨
⎩℘ ∈ P(K, c, x)

∣∣∣ ωA

(
χA

(
φ(F℘)

))
− log x

√
log x

≤ u

⎫⎬
⎭ = G(u).

Proof. Notice that

ωy,1,g

(
χA

(
φ(F℘)

))
− E[Sy]√

Var[Sy]

=
ωy,1,g

(
χA

(
φ(F℘)

))
− log x

√
log x

· log x√
Var[Sy]

+
log x− E[Sy]√

Var[Sy]

and
√
log x/

√
Var[Sy] → 1 and (log x− E[Sy])/

√
Var[Sy] → 0 as x → ∞.

Then apply Propositions 5.2, 5.3, 5.4. �
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6. A prime analogue of the Erdős-Pomerance conjecture

for Drinfeld modules

Now, let 0 
= a ∈ K. Let P(K, a, c, x) be the places ℘ of K of good reduction,
of degree x, such that (℘,K ′/K) = c and a is a unit modulo ℘. Notice that for
x large enough P(K, a, c, x) = P(K, c, x). As we are interested in the behaviour
of ℘ as deg℘ tends to infinity, we may safely omit a and consider P(K, c, x). For
℘ ∈ P(K, c, x), let W be the submodule of φ(F℘) generated by a. Let N be the
Euler-Poincaré characteristic of W , and define fa(℘) to be the number of distinct
primes of A dividing N . Define Ea(℘) to be the number of primes Q of A such
that Q divides the Euler-Poincaré characteristic of φ(F℘) but Q doesn’t divide the
Euler-Poincaré characteristic of W , the submodule generated by a.

We aim to show that fa(℘) follows the same distribution as ωA

(
χA

(
φ(F℘)

))
.

In order to do this we must give an upper bound for the sum of
(
Ea(℘)

)2
over ℘

with (℘,K ′/K) = c. To do this, we will combine the ideas of [16] and [18].

Proposition 6.1.

ωA

(
fa(℘)

)
+ Ea(℘) = ωA

(
χA

(
φ
(
F℘)
))

.

Proof. This is the definition of Ea(℘). �
Following previous sections, let c ⊆ Gal(K ′/K) be a fixed conjugacy class, let

g ∈ c, let E ⊆ K ′ be the fixed field of 〈g〉, let φ′ : A′ → E{τ} be the Drinfeld module
corresponding to the endomorphisms with coefficients in E, and let us consider
primes ℘ of K such that there is a prime ℘′′ of K ′ such that (℘′′,K ′/K) = g and
the prime lying below ℘′′ and above ℘, called ℘′, satisfies F℘′ ∼= F℘.

Now, let E′
a(℘

′) be the number of primes q of A′ such that φ′[q]∩φ′(F℘′) 
= 0 but
φ′[q]∩W ′ = 0, where W ′ is the A′-submodule of φ′(F℘′) generated by a. Then if Q
contributes to Ea(℘), then W ′∩φ′[q] = 0 for all q dividing Q, and φ′[q]∩φ′(F℘′) 
= 0
for some q dividing Q. In particular,

Ea(℘) ≤ E′
a(℘

′).

As in Section 4, we have now reduced ourselves to the case that φ′ : A′ → E{τ}
is a Drinfeld module and Gal(K ′/E) = 〈g〉 and Gal(l/k′) ∼= Gal(K ′/E).

Definition 6.2. Let a be a square-free ideal of A′. Let

a
−1W ′ = {α ∈ Ksep | φ′

a(α) ∈ W ′ for all a ∈ a}.
Let W ′′ = {ψb(a) | b ∈ B} ⊆ K ′. If b is an ideal of B, let

b
−1W ′′ = {α ∈ Ksep |ψb(α) ∈ W ′′ for all b ∈ b}.

Proposition 6.3. We have that K ′(a−1W ′) = K ′(a−1W ′′).
Define La

a = K ′(a−1W ′). Fix a basis λ1, . . . , λn′ , α for a−1W ′′/W ′′. There exists
a lift of g ∈ Gal(K ′/E) to Gal(La

a/E) (which we also call g) such that g(λi) = λi

and g(α) = α.
Then for each σ ∈ Gal(La

a/E), we may write σ = Ug, where U ∈ Gal(La
a/K

′).

Theorem 6.4 ([25, Theorem 1.6]). There exists an element M ∈ A′ such that if
a is an ideal of A′ and gcd(a,M) = 1, then

Gal(La
a/K

′) ∼= (B/aB)n
′
�GLn′(B/aB)

and La
a/K

′ is a geometric extension.
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Definition 6.5. Fix a prime q of A′. Choose α ∈ q−1W ′/W ′ which gets mapped
to a generator of q−1/A′ in the exact sequence

0 → φ′[q] → q−1W ′/W ′ → q−1/A′ → 0.

Let Ca
q consist of those σ ∈ Gal(La

a/K
′) such that σ|K′(φ′[q]) ∈ Cq and such that

σ(α) = α+ (σ − 1)(λ) for some λ ∈ φ′[q].

Proposition 6.6. Let
|Ca

q |
[La

q:E] =
1

[K′:E]λ(q). Then,

1

rdeg q(rdeg q − 1)
− 1

r2 deg q(r2 deg q − 1)(rdeg q − 1)
≤ λ(q) ≤ 1

rdeg q(rdeg q − 1)
.

Proposition 6.7.

π(x, La
q/E, Ca

q ) � O(rx−2 deg a/x) + O(rx/2 deg ardeg a(nn′+n−2)).

Proposition 6.8.
∑

℘∈P(K,c,x)

(
Ea(℘)

)2 � #P(K, c, x).

Theorem 2.4 now follows by combining Theorem 2.2 and the proof of [16, The-
orem 2]. Details have been omitted.
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