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Abstract

In 1986, Gupta and Murty proved the Lang-Trotter conjecture in the case of elliptic
curves having complex multiplication, conditional on the generalized Riemann hypothesis.
That is, given a non-torsion point P ∈ E(Q), they showed that P (mod p) generates
E(Fp) for infinitely many primes p, conditional on the generalized Riemann hypothesis.
We demonstrate that Gupta and Murty’s result can be translated into an unconditional
result in the language of Drinfeld modules. We follow the example of Hsu and Yu, who
proved Artin’s conjecture unconditionally in the case of sign normalized rank one Drinfeld
modules. Further, we will cover all necessary background information.
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Chapter 1

Introduction

1.1 Artin’s primitive root conjecture

We say that an integer a is a primitive root mod p if the class of a mod p generates the
multiplicative group F∗p, where p is prime. In [2], Artin conjectured that an integer a, which
is not equal to ±1 or any square, should be a primitive root for infinitely many primes p.
He further conjectured that the set of primes p for which a is a primitive root mod p should
have a natural density A(a) > 0 which is given by an Euler product. These conjectures
are called Artin’s primitive root conjecture and have been a continuing subject of study to
this date.

We need algebraic number theory to investigate the density A(a). For each positive
integer m, let Ka

m = Q(a1/m, ζm), where ζm is a primitive mth root of unity. By examining
the behaviour of the prime ideal p in the extensions Kq for q prime, we get that a is a
primitive root mod p if and only if p does not split completely in any extension Ka

q , for
q prime. The Chebotarev density theorem then tells us that the density of primes which
split completely in Ka

q is [Ka
q : Q]−1. (For an effective version see [19]) This heuristic allows

us to guess that

A(a) =
∏

q prime

(
1− 1

[Ka
q : Q]

)
.

By incorporating inclusion-exclusion into our heuristic, we obtain the more accurate for-
mula

A(a) =
∑
m≥1

µ(m)

[Ka
m : Q]

,
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where µ(m) = (−1)j if m is the product of j distinct primes for some j, and 0 otherwise.

In 1967, Hooley[16] proved Artin’s primitive root conjecture conditionally on the gener-
alized Riemann Hypothesis for the number fields Ka

m, m ≥ 1. Recall that the generalized
Riemann Hypothesis is for Ka

m is the assumption that the analytic continuation of the
function

ζKa
m

(s) =
∑

I an ideal of OKam

NKa
m/Q(I)−s,

has all of its non-trivial zeroes lying on the line Re(s) = 1/2.

Now, let

Na(x) = #{p prime : p ≤ x, a is a primitive root mod p}.

Theorem 1.1.1 ([16], Theorem, pp. 219-220). Suppose that a is a non-square and not
equal to ±1. Further, assume that the generalized Riemann Hypothesis holds for the exten-
sions Ka

m,m ≥ 1. Then

Na(x) = A(a)x/ log x+ O(x log log x/(log x)2),

with

A(a) =
∑
m≥1

µ(m)

[Ka
m : Q]

> 0.

We can broadly think of Hooley’s proof as being organized into several steps, which we
can imitate when thinking of similar questions. First, restate “a is a primitive root mod
p” as “p splits completely in no field Ka

m”. Next, determine a bound for the discriminant
of Ka

m for each m ≥ 1, and determine bounds for [Ka
m : Q] for each m ≥ 1. One then

observes that
Na(x) = N(x, y) + O(M(y, x)),

where N(x, y) is the number of primes which do not split completely in Ka
q with q ≤ y,

and M(y, x) is the number of primes which split completely in some Ka
q with y < q ≤ x.

Then see that y can be chosen so that N(x, y) = A(a)x/ log x + O(x log log x/(log x)2).
Then the error term M(y, x) is dealt with by a combination of sieving techniques. Finally,
further investigation of [Ka

m : Q] gives that A(a) has an Euler product, which leads to the
fact that A(a) > 0.

After Hooley’s success, it is natural to ask whether the concept of a primitive root can
be generalized to (abelian) algebraic groups defined over Q. One particular example is
elliptic curves.
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1.2 The Lang-Trotter Conjecture

Suppose that the algebraic curve E(C) = {(x, y) ∈ C2 : y2 = x3 +ax+ b}
⋃
{∞} is smooth

(this is the same as requiring that f(x) = x3 + ax + b has no repeated roots). Suppose
also that a, b ∈ Q. Then we say that E is an elliptic curve defined over Q. The set
of rational points of E(Q) = {(x, y) ∈ Q2 : y2 = x3 + ax + b}

⋃
{∞} forms an abelian

group. An endomorphism of E is a map (x, y) → (f(x), g(y)) such that f, g are fractions
of polynomials which can be extended to be defined everywhere on E(C), and which takes
∞→∞ when extended. The set of endomorphisms is a commutative ring which contains
Z under the map n→ {P → n · P ). If it is strictly larger than Z then we say that E has
complex multiplication (abbreviated CM).

For a point a ∈ E(Q) which is non-torsion, and a prime p, we say that a is a primitive
point mod p if E has good reduction at p and a ∈ E(Fp) generates E(Fp) as an abelian
group. Obviously, if a is a primitive point for E mod p, then E(Fp) must be cyclic. This
leads us to ask whether or not E(Fp) is cyclic for infinitely many primes p. The answer to
this question is given by Serre in [29] in the affirmative giving a positive density of such
primes, assuming the generalized Riemann hypothesis. This was later refined by Gupta
and Murty in [12] to an unconditional result, but at the cost of losing the natural density.

Therefore, it makes sense to consider an elliptic curve version of Artin’s primitive
root conjecture. In fact, Lang and Trotter [20] made the relevant conjecture, along with
computational evidence and heuristics based on the Chebotarev density theorem.

Let E be an elliptic curve defined over Q, and a ∈ E(Q). For a prime p of good
reduction for E, let i(p) = [E(Fp) : 〈a〉], where a is the point in E(Fp) corresponding to
a mod p and 〈a〉 represents the subgroup of E(Fp) generated by the reduction of a. Let
Ka
m = Q(E[m],m−1a), for m a square-free integer. Lang and Trotter show that there is a

union of conjugacy classes Cm ⊂ Gal(Ka
m/Q) such that q | i(p) if and only if σp ⊂ Cq. Here,

σp denotes the union of all the Frobenius’ automorphisms for p′ lying above p. Further, let
δ(m) = |Cm|/[Ka

m : Q]. Then Lang and Trotter [20] conjectured that∑
m≥1

µ(m)δ(m)

is equal to the density of primes p for which a is a primitive root mod p.

There is one main obstacle towards proving the Lang-Trotter by following Hooley’s
argument. That is for q large enough |Cq| ∼ q4 if E does not have complex multiplication
or q2 when E does have complex multiplication, and [Ka

q : Q] ∼ q6 if E does not have
complex multiplication or q4 if E does have complex multiplication. These larger degrees
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for |Cq| and [Ka
q : Q] as well as increased discriminant values conflict with the error terms

in the Chebotarev density theorem, even if we assume the generalized Riemann hypothesis.
There is no obvious way around this obstacle. Luckily Gupta and Murty [11] circumvented
these difficulties in the case where E has complex multiplication.

1.3 Gupta’s and Murty’s work

Gupta and Murty first assume that they are in the case where E has complex multiplica-
tion by the full ring of integers Ok, where k is a quadratic imaginary extension of Q. Put
simply, Gupta and Murty aim to make the Lang-Trotter conjecture tractable by splitting
the condition that q | i(p) into two independent conditions, each of which is equivalent to
a condition of the form “p splits completely in an extension field (depending on q)”. Now,
our main term becomes a double sum and since we are looking for primes which split com-
pletely, the error term coming from the Chebotarev density theorem is more manageable.
Unfortunately, this method only deals with the primes p which split completely in k, so
even in this case, a density result remains elusive.

Let

Na(x) = {p prime | p ≤ x, p splits completely in k, a is a primitive point mod p}.

Theorem 1.3.1 ([11],Theorem 1). Let E be an elliptic curve defined over Q with complex
multiplication by Ok, and let a ∈ E(Q) be a point of infinite order. Under the GRH for
each number field Ka

m,

Na(x) = δE(a)
x

log x
+ O

(
x log log x

(log x)2

)
,

as x→∞.

Further, they gave conditions [11, Theorem 2] which imply that δE(a) > 0, hence
giving a conditional proof of the Lang-Trotter conjecture in these cases. Although they
were not able to resolve the Lang-Trotter conjecture if E has no complex multiplication,
by considering finitely generated torsion-free subgroups Γ ⊂ E(Q), they were able to make
progress.

Let Γ be a freely generated subgroup of E(Q), generated by t elements. Denote the
reduction of Γ mod p by Γp for those p where E has good reduction. Let NΓ(x) be the
number of primes of good reduction for E, less than or equal to x for which Γp = E(Fp).
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Theorem 1.3.2 ([11], Theorem 3). Suppose that E has no complex multiplication and
rank(Γ) = t ≥ 18. Then, under GRH, there is a constant δE(Γ) such that

NΓ(x) = δE(Γ)x/ log x+ o(x/ log x),

as x→∞.

If we suppose that E has complex multiplication and let ÑΓ(x) be the number of primes
which split completely in k, of good reduction for E and satisfy Γp = E(Fp).

Let 1/2 ≤ η < 1. The term η-GRH means that the Dedekind zeta functions for ζL
have no zeroes in the region Re(s) > η, where L runs over the number fields KΓ

m, with m
squarefree.

Theorem 1.3.3 ([11], Theorem 4). Suppose that E has complex multiplication by an order
in k and that rank(Γ) = t. Assuming an t/(t+ 1)-GRH, we have

ÑΓ(x) = δE(Γ)x/ log x+ o(x/ log x),

as x→∞.

The main goal of this thesis is to formulate and prove analogous results to these, where
we consider Drinfeld modules over function fields with constant field Fr, where r is a power
of a prime.

1.4 The Carlitz module and Drinfeld modules

For an introduction to function fields see [27, Chapters 2,5,12,13] and for more detailed
information see [8, Chapters 2,3,4,6]. For a comprehensive treatment of Drinfeld modules
see [10, Chapter 4]. For now, we will be as brief as possible with our treatment, leaving
the details for later.

In this thesis, a function field F will be an extension of Fr, where r is a power of a
prime, such that the transcendence degree of F over Fr is 1 and F ∩ Fr = Fr. For a fixed
rational prime ∞, let A be the ring of elements of F for which v`(x) ≥ 0 for any x ∈ A,
and place ` 6=∞.

Example 1.4.1. Let F = Fr(T ) with T an indeterminate. Let A = Fr[T ] be the polynomial
ring with coefficients in Fr. For f(T ) ∈ Fr[T ], define deg f = [A/f(T ) : Fr]. The primes
of A are the monic, irreducible and non-constant polynomials in A.
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The A defined above is well-known to be similar to the integers in many ways. For
example, let

πFr[T ](x) = #{P (t) ∈ Fr[T ]|P is a prime, degP = x.}

Then a counting argument [27, Theorem 2.2] gives

πFr[T ](x) =
rx

x
+ O

(
rx/2

x

)
,

as x ∈ N, x→∞. When A and F are more general, we can use [27, Theorem 5.12].

Compare this to the regular prime number theorem, by considering x above as log x in
the prime number theorem and rx above as x in the prime number theorem. In fact, in
these terms, the prime number theorem for Fr[T ] is as strong as the Riemann Hypothesis
in the classical case. A general program of study is therefore to convert classical results
which are conditional on GRH to results for function fields which are unconditional.

Two other papers which we will follow for our results are [17] and [18], which state and
prove the analogue to Artin’s conjecture for the Carlitz module and rank 1 sgn-normalized
Drinfeld modules respectively. Before we can state these results, we must introduce the
Carlitz module and Drinfeld modules in general.

For the original paper by Carlitz see [5]. The idea of the Carlitz module is to provide
F with an additional A-module structure. Since in this case A = Fr[T ], let us first define
the T action. Let CT : F → F be defined by CT (X) = Xr + TX. Then CT is Fr-linear.
When we want to multiply x in the module F by T , we can apply CT to x. Now, we want
a homomorphism from A to the Fr-linear endomorphisms of F , which extends T → CT
This implies that Cb = bX for b ∈ Fr, and CTn = CT (CTn−1), which associates to each
element of Fr[T ] an Fr-linear polynomial.

Notice as well that the action of A by C is well-defined for any field extension of F .
Further, if P is a monic irreducible, the action induced by C turns Fr[T ]/P into an Fr[T ]-
module as well. Compare this to the action of the integers on the multiplicative group
Q∗. Building on this analogy, Hayes [13],[14] and Drinfeld [6],[7] somewhat independently
developed class field theory for function fields over finite fields.

We need slightly more language to talk about Drinfeld modules in general.

Define τ : F → F by the following formula,

τ(X) = Xr

6



for X ∈ F . Another way to state this is τ ∈ EndFr(Ga(F )), where Ga is the functor which
associates to each field its underlying additive group. That is, τ(x+ y) = τ(x) + τ(y) and
τ(αx) = ατ(x) for x, y ∈ F, α ∈ Fr. Then set F{τ} to be the ring generated by τ and F ,
with the natural relations inherited by the definition of τ . That is, τnτm = τn+m, τ ·x = xrτ ,
for x ∈ k.

If F is infinite then EndFr(Ga(F )) = F{τ}, by [10, Proposition 1.1.5].

We say that K is an A-field if it is equipped with a homomorphism i : A→ K.

Definition 1.4.1. Let φ : A→ K{τ} be a homomorphism of Fr-algebras. For a ∈ A, the
image of a under φ is denoted φa. Write

φa = φa,nτ
n + · · ·+ φa,1τ + φa,0τ

0,

with φa,n 6= 0, and φa,i ∈ F . We say that φ is a Drinfeld module if φa,0 = i(a) for all a ∈ A
and φa∗ 6= i(a∗)τ 0 for some a∗ ∈ A. We will set φa to be the image of a in K{τ} under φ.
For fixed a, the number d := degτ φa/ deg a is a positive integer which is independent of a.
The positive integer d is called the rank of the Drinfeld module.

1.5 Artin’s conjecture for Drinfeld modules

As before, by reducing the coefficients of Cf modulo P , for a monic, irreducible P ∈ Fr[T ],
we obtain an action Cf on A/P ≡ FrdegP . When we are talking about A/P as an A-module
via C, we will refer to it as C(A/P ). Now, fix a ∈ Fr[T ] and let A ·a denote the submodule
of C(A/P ) generated by the reduction of a mod P . Let

Na(x) = #{P ∈ Fr[T ] : P is monic, irreducible with degP = x, and A · a = C(A/P )},

for x ∈ N. As usual, for a polynomial m ∈ A,we define the m-torsion of C to be

C[m] = {x ∈ F | Cm(x) = 0}.

Let α be a particular root of Cm(X) = a. Then, just as in the classical case, the
extensions Ka

m = F (C[m], α) play an integral role in the proof.

Theorem 1.5.1 ([17], Theorem 4.6). Suppose that 0 6= a ∈ Fr[T ]. Then there exists a
constant δa such that

Na(x) = δa
rx

x
+ o

(
rx

x

)
,

7



for x ∈ N as x→∞, with δa > 0 except for when r = 2 and a ∈ {1} ∪ CT (A) ∪ C1+T (A).

If r 6= 2, we have

δ(a) =
∏

q∈Fr[T ], monic, irreducible

(
1− 1

[Ka
q : k]

)
.

The proof of this proceeds similarly to that of Hooley’s result, the main difficulties
arising from ramification at the prime at ∞ (corresponding to (1/t)), as well as proving
that [Ka

mn : k] = [Ka
m : k][Ka

n : k], for (m,n) = 1. That is, because we are not working over
the integers, working out the multiplicative nature of these field extension degrees requires
more work than the classical case.

Later, Hsu and Yu [18] were able to extend this result to a class of rank 1 Drinfeld
modules, called sgn-normalized rank 1 Drinfeld modules. We will state their result here.
Let F be a function field, and ∞ a rational prime of F . Set O to be the subring of F
consisting of all elements which are regular everywhere except possibly ∞. Let HO be
the Hilbert class field of O, (i.e., the maximal unramified extension of F such that ∞
splits completely). Let O′ be the integral closure of O in HO. Let ψ be a rank 1, sgn
normalized Drinfeld module with coefficients in O′. For prime ideals P of O′, we say that
a is a primitive root mod P if a generates ψ(O′/P) as an A-module.

Theorem 1.5.2 ([18], Theorem 4.6). Suppose that r 6= 2 and 0 6= a ∈ O′. The set of
primes P of O′ for which a is a primitive root mod P has density δψ(a) > 0, which is given
by an Euler product.

The notion of sgn-normalized rank 1 Drinfeld modules arises naturally from the class
field theory of F , and we will address all notation in Chapter 3.

1.6 Lang-Trotter for rank 2 Drinfeld modules

Earlier, we saw that the Lang-Trotter conjecture is a natural elliptic curve analogue of
Artin’s conjecture. Further, Hsu and Yu’s result is a function field analogue for Artin’s
conjecture. Actually, Bilharz [4] proved a function field analogue for Artin’s conjecture as
well. That is, let K be a global function field, and let a ∈ K. Given a prime P = (OP , RP )
of K, if the reduction of a modulo P generates (OP/RP )∗ multiplicatively, then we say
that a is a primitive root modulo P . Briefly, under suitable conditions on the field K and
a ∈ K, Bilharz proved that a is a primitive root modulo P for infinitely many primes

8



P . This is the most direct generalization of Artin’s Conjecture to the function field case.
Bilharz assumed the Riemann Hypothesis for function fields which was later proved by
Weil. Further, Bilharz obtained a Dirichlet density for the set of primes in question, but
not a natural density.

One of the goals of this thesis is to prove a function field analogue for the result of Gupta
and Murty. During this proof, we will expose some of the deep similarities between the
arithmetic of elliptic curves, the functor Gm(·) which assigns to every field its multiplicative
group of non-zero elements, and Drinfeld modules.

Let φ : A → K{τ} be a Drinfeld module of generic characteristic, where the fraction
field of A is F and [K : F ] < ∞. Let P be a prime of K (a local sub-ring OP and
corresponding maximal ideal RP ) which does not lie above ∞. For all but finitely many
P , the coefficients of φa will be elements of OP for all a ∈ A. We can reduce them modulo
P to obtain a Drinfeld module φ(FP ) (where FP = OP/RP ). If we again exclude finitely
many P , we can insist that φ(FP ) has the same rank as φ.

If a ∈ F is such that a ∈ OP , then we can ask whether or not a+RP generates φ(FP )
as an A-module. Let A · a be the submodule of φ(FP ) which is generated by a+RP . If it
so happens that φ has “good reduction” at P , and a ∈ OP , and φ(FP ) is generated by α,
then we say α is a primitive point mod P .

Conjecture 1.6.1. Let a be a non-torsion point for φ, a rank 2 Drinfeld module defined
over K, with [K : F ] finite. Suppose that tor(φ) is cyclic (the submodule of rational
torsion). Then a is a primitive point mod P for infinitely many primes P of K.

We now make assumptions that correspond to CM. Let k be an extension of F such
that ∞ ramifies and [k : F ] = 2. Further suppose that End(φ) is the integral closure of
A in k, say that End(φ) ∼= O(= Ok). The case that ∞ does not ramify is not covered
in this thesis. If ∞ is inert, there are two possibilities. The first is that k = F (Fr2) is
a constant field extension. One example of this is F = Fr(T ), k = Fr2(T ). The second
case is if k has Fr as its constant field, and then ∞ is of degree 2 in k. In the first case,
the constant field complicates the splitting behaviour of primes, as well as the Chebotarev
density theorem. Thus, the difficulty lies with resolving the peculiarities of constant field
extension, rather than generalizing the work of Gupta and Murty. To solve the second
case, we would have to attempt to generalize Hsu and Yu’s work for Artin’s conjecture for
rank 1 Drinfeld modules. Again, this is worth doing, but it is outside of the scope of this
thesis. We expect that the constant field extension case will be solved in the future.

Let ψ be the rank 1 Drinfeld module such that ψ : O → HO, and ψ restricted to A is φ.
Assume that HO is the Hilbert class field of k, and that HO has constant field equal to Fr.
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Finally, assume that ψ is a sgn-normalized Drinfeld module, for some sign function sgn. A
sign function for us is a homomorphism sgn : F ∗∞ → F∗r which fixes F∗r. We set sgn(0) = 0.
The Drinfeld module ψ is sgn-normalized if the leading coefficient of ψx is sgn(x).

Let a ∈ K, x ∈ N, then we let

Nα(x) = #

{
P a prime of K

∣∣∣∣ degP = x, P splits completely in HO

a is a primitive root mod P

}

Theorem 5.1.1. Let φ : A → K{τ} be a rank 2 Drinfeld module, with CM by a sgn-
normalized Drinfeld module ψ of rank 1, ψ : O → O′{τ}. Suppose that tor(φ) is cyclic.
Let a ∈ K be a non-torsion element for φ, then there exists δφ(a) > 0 such that

Na(x) = δφ(a)
rx

x
+ O

(
rx log x

x2

)
as x tends to infinity.

For our second theorem, let A = Fr[T ] and K = F = Fr(T ).

Let φ : A→ F{τ} be a Drinfeld Module of rank 2, defined by

φT = ∆τ 2 + gτ + T,

for some D, g ∈ F,D 6= 0. Suppose further that φ has no complex multiplication over any
extension field.

Let Γ be a finitely generated free A submodule of F (see [24] for the structure of F ).
That is Γ = A · {a1, . . . , as} and the ai’s are independent over A (remember that the A
action is given by φ).

A prime P of A will be a monic irreducible. These correspond to the prime ideals of A.

For all but finitely many primes P of F , we may reduce Γ modulo P to obtain a
submodule ΓP of the Drinfeld Module φ(FP ), where FP is the residue field of A modulo P .

Theorem 5.1.2. Let F = Fr(T ), A = Fr[T ], φT = Dτ 2 + gτ + T,Γ = A · {a1, . . . , at} and
NΓ denote the number of primes of A of degree x with ΓP = φ(FP ). If t ≥ 18 then,

NΓ(x) = δφ(Γ)
rx

x
+ O

(
rx log x

x2

)
as x→∞ for x ∈ N, if we assume that the Kummer extension fields associated to Γ have
constant field equal to Fr.
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Notice that in the above result, as well as [11, Theorem 4], we require the 18 independent
generators in Γ. This is very unlikely to happen for elliptic curves, but for Drinfeld modules,
we can find many examples of Γ, by [24, Theorem 1].

1.7 An overview of the rest of the thesis

In order to understand our motivation for the method of Gupta and Murty, we give a
summary of their work [11] in Chapter 2. This will provide our general program for the
rest of the thesis. We will be able to see the motivation behind our work for the Drinfeld
module case. Further, we will see how Gupta and Murty overcame the main obstacles of
the Lang-Trotter conjecture. There are three results which are interesting because we are
able to prove an analogue for Drinfeld modules. These results are [11, Theorems 1,2,3].
We are able to prove a more general result than would be expected, in part because of the
explicit class field theory available in the function field case.

In Chapter 3, we will explore the theory of Drinfeld modules in detail. There is much to
define and prove before one can start talking about the arithmetical properties of Drinfeld
modules. We will not prove everything, but we will prove some of the results which are
fundamental to the later sections. First, we will see the theory of additive functions over
a field of finite characteristic. Then we review some non-archimedean analysis, especially
important is the theory of Newton polygons. We then give the definition of Drinfeld
modules and look at some of the basic theory of the subject. The main areas to note are
the theory of endomorphisms, reduction theory, analytic uniformization theorems and class
field theory.

In Chapter 4, we have compiled all of the algebraic number theory results. That is,
the Kummer theory which is hybridized from [17, 18, 25, 26]. Further, we need many
discriminant bounds, which are compiled here as well. Finally, we review the relevant
sections of [18] which we need for our CM theory.

In Chapter 5, we prove our main results, drawing on all previous chapters as well as
prime counting theorems.

Finally, in Chapter 6, we give some future work directions, as well as any difficulties
towards future goals.
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Chapter 2

Overview of the Lang-Trotter
conjecture and Gupta’s and Murty’s
work

2.1 Elliptic Curves review

For a background reference on elliptic curves, see [33].

Let E be an elliptic curve defined over Q. The curve E is defined by an equation
y2 = x3 + ax + b, such that a, b ∈ Q and the resulting projective curve is smooth. This
is true if we require f(x) = x3 + ax + b to have no repeated roots. Let E(Q) = {(x, y) ∈
Q2 : y2 = x3 + ax+ b}

⋃
{∞}, where ∞ refers to the point at infinity when we look at this

curve as being embedded in P2. It is well-known that E(Q) is a group. In fact, let K be
a field with Q ⊂ K; then the set of points with coefficients in K is also a group, denoted
E(K) (again we are including the point at infinity).

We are interested in what happens to this group when we reduce the coefficients of E
modulo various primes. Let ∆ = disc(f(x)) (where disc(f(x)) is the discriminant of f).
We will give a very crude treatment of the reduction theory. Let Op = {x ∈ Q | vp(x) ≥ 0}.
We may assume that a, b ∈ Op and ∆ ∈ O×p for all but finitely many p. For these p, we
see that by reducing the equation y2 = f(x) modulo p, we obtain an elliptic curve defined
over Fp. If this is the case then we say that E has good reduction at p. So we see that E
has good reduction modulo all primes with only finitely many exceptions.
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Let n ∈ Z, and
E[n] = {P ∈ E(C) | n · P =∞}.

Then, as an abstract group E[n] ∼= (Z/nZ)2. If E is a curve defined over a field of positive
characteristic, say p, then E[pn] is isomorphic to either Z/pnZ or 0. For n coprime to p,
we have that E[n] ∼= (Z/nZ)2, as before.

The structure of the K-points of E is determined by the following theorem.

Theorem 2.1.1 ([33], Theorem 6.7, Mordell-Weil Theorem). Let K be a finite extension
of Q and E/K be an elliptic curve. Then there exists a non-negative integer t, called the
rank of E (over K), such that

E(K) ∼= Zt ⊕ Etors,

where Etors is the torsion subgroup of E(K). Further Etors is finite.

Let p be a prime where E has good reduction. Then since E(Fp) is a finite group it is
torsion, hence we may write

E(Fp) ∼= Z/m1Z⊕ Z/m2Z,

with m1 | m2. Thus, in general, the finite abelian group E(Fp) may or may not be cyclic.

Finally, an important aspect of Gupta’s and Murty’s work is that it requires complex
multiplication theory for one of the main results. A map f : E → E which is defined by
rational functions is called an endomorphism if it takes∞ to∞, and is defined everywhere.
It is called an isogeny if it is not the constant map f(P ) = ∞. Then f respects the
group law, see [33, Chapter 1, Section 3 and Chapter 3, Section 4]. One example of such
an endomorphism is the multiplication by n map, denoted [n]. Let K be a field such
that Q ⊂ K. Then the endomorphisms defined over K form an integral domain, called
EndK(E), with product given by composition, and addition given by pointwise addition.
Denote by End(E) the ring of all endomorphisms of E. Then k = End(E)⊗Q is either Q
or a quadratic imaginary extension of Q. Further End(E) is an order in k. For clarification,
we mean that End(E) is contained in the integral closure of Z in k, it is finitely generated
as an abelian group, and it satisfies End(E) ⊗ Q = k. There is a finite extension K of Q
such that EndK(E) = End(E).

We want to see that all endomorphisms of E are defined over k. Let G := Gal(Q/Q).
Then, for φ ∈ End(E), g ∈ G define g · φ = gφg−1, which gives an action of G on End(E)
which satisfies

gh(φ) = g(h(φ)),

g(φψ) = (gφ)(gψ),
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and
g(ψ + φ) = gψ + gφ.

Further, we have that g · [n] = [n], where n is the multiplication by n map (since E is
defined over Q).

Let x ∈ Ok such that k = Q(x), and there exists φ ∈ End(E) such that φ satisfies the
same equation over Z that x does. Thus, the polynomial f splits in the field k. Further
g(φ) + φ = g(x) + x and so φ is fixed by g if and only if x is fixed by g, for any g ∈ G.
Let P ∈ E(k), then g(P ) = P for g ∈ Gal(Q/k), let φ ∈ End(E), then g(φ) = φ, so
φ(P ) = g(φ(g−1(P ))) = g(φ(P )), so φ(P ) ∈ E(k).

2.2 Main Results

We want to investigate the structure of E(Fp) for various primes p. It is natural to ask
whether or not E(Fp) is cyclic for infinitely many primes p.

Theorem 2.2.1 ([29], Theorem 1.1). Assume the generalized Riemann hypothesis for the
number fields Km, where Km is Q adjoined by the coordinates of all the m-torsion points
for E. Then E(Fp) is cyclic for infinitely many primes p. Further, let

NE(x) = #{p prime | E has good reduction at p, E(Fp) is cyclic}.

Then there exists a constant δE such that

NE(x) = δE
x

log x
+ o

(
x

log x

)
,

with δE > 0 if and only if E has an irrational 2-torsion point.

Theorem 2.2.2 ([12], Theorem 1). Let E,NE(x) be as above. If E has an irrational
2-torsion point, then

NE(x)� x

(log x)2
.

Now, given a point a ∈ E(Q) of infinite order and a prime p of good reduction, we
may reduce the coordinates of a modulo p. That is, if a = (x, y), then in projective
coordinates a = [x : y : 1], so rewrite a as [x′ : y′ : z] where all coordinates are integers
and gcd(x′, y′, z) = 1. By reducing x′, y′ and z modulo p we obtain a point a ∈ E(Fp). If
a generates E(Fp) then we say that a is a primitive point modulo p. If Γ is generated by

15



n points which are independent over Z, then we denote the reduction of Γ modulo p by Γp
and we get that Γp is a subgroup of E(Fp).

Let

Na(x) = #{p ≤ x, prime | p splits in k, a is a primitive point modulo p}.

Theorem 2.2.3 ([11], Theorem 1). Let E be an elliptic curve defined over Q with complex
multiplication by Ok and let a be a rational point of infinite order. Under the GRH,

Na(x) = δE(a)
x

log x
+ O

(
x log log x

(log x)2

)
,

as x→∞.

Gupta and Murty are able to give conditions which imply δE(a) > 0.

Theorem 2.2.4 ([11], Theorem 2). If 2 and 3 are inert in k or k = Q(
√
−11), then

δE(a) > 0. Therefore, on the GRH,

Na(x)� x

log x

in these cases.

Unfortunately, their method is only able to treat the primes that split in k.

By considering multiple generators, i.e. a subgroup generated by n elements, Gupta
and Murty were able to make some progress in the non-CM case. Let Γ be a free subgroup
of E(Q) of rank t. For a prime p of good reduction, denote by Γp the subgroup of E(Fp)
generated by the reduction of each generator of Γ modulo p. Let

NΓ(x) = #{p ≤ x, p prime | p is of good reduction, Γp = E(Fp)}.

Theorem 2.2.5 ([11], Theorem 3). Suppose that E has no complex multiplication and
rank(Γ) = t ≥ 18. Then, under GRH, there is a constant δE(Γ) such that

NΓ(x) = δE(Γ)
x

log x
+ o

(
x

log x

)
as x→∞.

A similar result is derived for the case when E has complex multiplication, but we
only need to assume that the corresponding Dedekind zeta functions have no zeroes in the
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region Re(s) > (t/(t + 1)). We call this assumption t/(t + 1)-GRH. This method again
only deals with those primes that split completely in k. Let

Ñγ(x) = #{p prime, p ≤ x | p splits in k,Γp = E(Fp)}.

Theorem 2.2.6 ([11], Theorem 4). Suppose that E has complex multiplication by an order
in k and recall that the rank of Γ is t. Assuming a t/(t+ 1)-GRH, we have

ÑΓ(x) = δ̃E(Γ)
x

log x
+ o

(
x

log x

)
as x→∞.

Using sieve theory, Gupta and Murty also showed

Theorem 2.2.7 ([11], Theorem 5). If E has complex multiplication and t ≥ 6, where t is
the rank of Γ, then

NΓ(x)� x

(log x)2
.

Our focus is on the paper [11] but it should be noted that [12] contains several related
results.

2.3 The Lang-Trotter condition

Let a ∈ E(Q) be a non-torsion point. For a prime p of good reduction, let 〈a〉 be the
subgroup of E(Fp) generated by the reduction of a modulo p, and let i(p) = [E(Fp) : 〈a〉].
We want to formulate a condition for q | i(p) in terms of the behaviour of p in an extension
field, similar to Artin’s conjecture.

We have that q | i(p) if and only if either

• E[q] ⊂ E(Fp) for q 6= p.

• The q primary part of E(Fp) is cyclic and there exists b ∈ E(Fp) such that q · b = a.

These conditions motivate the definition of the fields Ka
q = Q(E[q], q−1a), just as in the

classical case.

Let Aq = Gal(Ka
q /Q). For σ ∈ Aq, we may represent σ as (γ, χ), where γ ∈ GL2(Z/lZ)

and χ ∈ E[q]. The action of σ can be given in terms of γ and χ. Since σ permutes the
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q-torsion, we may denote this action by γ. Also, let u0 be a particular point such that
q · u0 = a. Since σu0 − u0 ∈ E[q], write σu0 − u0 = χ. Let u be an arbitrary point such
that q · u = a. Then σ(u− u0) = γ(u− u0). Thus

σ(u) = u0 + χ+ γ(u− u0).

Thus, we see that σ(u) = u if and only if

(γ − 1)(u0 − u) = χ.

Next, we formulate a condition such for q | i(p) whenever p - q∆, where ∆ is the
discriminant of the curve.

Lemma 2.3.1 ([20], Lang-Trotter condition, pp. 289-290). Suppose p - q∆. Fix a member
σp = (γp, τp) in Gal(Ka

q /Q) in the conjugacy class of the Frobenius at p. Then q | i(p) if
and only if either

1. γp = 1

2. γp has eigenvalue 1, ker(γp − 1) is cyclic and τp ∈ Im(γp − 1).

Remark 2.3.1. The set Cq corresponding to elements (γ, τ) of Gal(Ka
q /Q) such that either

γ = 1 or γ has eigenvalue 1 and τ ∈ Im(γ − 1) is a union of conjugacy classes.

For p > 5, if p | i(p) then it is clear that #E(Fp) = p. Hence, by Serre’s result [32,
Theorem 21], we have that the number of such primes is o(x/ log x), whether or not E has
CM.

We now refine the Lang-Trotter condition to the case when p splits completely in k.
Let End(E) = Ok be the ring of integers of k, where k is a quadratic imaginary extension
of Q. Since E is defined over Q, we have that the class number of Ok is equal to 1. This
is because the j invariant of E is rational, and the class number of Ok is bounded by
[Q(j(E)) : Q]. For an ideal a = (α) of Ok, let a−1a denote a point b ∈ E(C) such that
α · b = a. This choice is unique up to translation by E[a] and multiplication by a unit in
Ok.

For q a prime ideal of first degree (i.e. the norm of q must be a rational prime), define

Ka
q = k(E[q], q−1a).
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Then Ka
q is independent of the choice of q−1a and is Galois over k. If q is a rational prime

set
Kq = k(E[q]).

Lemma 2.3.2 ([11], Lemma 3). Suppose that p splits in k and p - q∆. Let p be such that
p = pp in k, and p gives the Frobenius endomorphism of E mod p.

1. If q is inert in k, then q | i(p) if and only if p splits completely in Kq.

2. If q ramifies or splits in k, let q = q1q2 be its factorization in k. Then q | i(p) if and
only if (p) splits completely in Ka

q1 or Ka
q2 or Kq.

2.4 Algebra, Kummer and Discriminants

Let a be a square-free ideal of Ok which is only divisible by prime ideal factors of first
degree and let s be a square-free integer. Define

Ka
a =

∏
q|a

Ka
q , n(a) = [Ka

a : k].

Notice that Ka
a = k(E[a], a−1a). Also, the group Gal(Ka

a /k) is a subgroup of{(
1 ∗
0 ∗

)
∈ GL2(Ok/a)

}
.

Set
Ks =

∏
q|s

Kq, m(s) = [Ks : k],

and
Ka

a,s = Ka
a ·Ks = k(E[l(a, s)], a−1a),

where l(a, s) is the least common multiple ideal of a, s in Ok.

Let n(a, s) be the degree of Ka
a,s over k and d(a, s) be the discriminant of Ka

a,s over Q.
The following lemmas estimate the numbers n(a, s) and d(a, s).

Lemma 2.4.1 ([11], Lemma 6). We have that

log n(a, s)� logN(a) + log s.
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Lemma 2.4.2 ([11], Lemma 7). We have that

log |d(a, s)|
n(a, s)

� logN(a) + log s.

Remark 2.4.1. We will see several similar results in Chapter 4.

Now, in order to estimate the density δE(a) we need to find a way to calculate n(a, s)
in terms of n(a) and m(s).

Lemma 2.4.3 ([11], Lemma 8). If a and s are coprime to 6∆, where ∆ is the discriminant
of E, then

n(a, s) =
n(a)m(s)

φ(a, s)
,

where (a, s) is the gcd of a and s in Ok, and φ(a, s) is #(Ok/(a, s))
∗.

2.5 Analysis overview of CM case

Let

N(x, y) = #

{
p a first degree prime of k
N(p) ≤ x

∣∣∣∣ p does not split completely in any
Kq or Ka

q for q ≤ y,N(q) ≤ y

}
Let S be the set of first degree prime ideals of k. Let T be the set of all rational primes.

Let Sy (resp. Ty) denote those elements of S (resp. T ) such that N(q) ≤ y (resp. q ≤ y).
Let S∗, T ∗, S∗y , Ty∗ denote the set of all square-free products of elements of S, T, Sy, Ty.

Now, let M(y1, y2) denote the number of primes p ≤ x such that p splits completely in
some Ka

q or Kq for y1 < q < y2 or y1 < N(q) < y2.

Proposition 2.5.1 ([11], p. 23). We have that

Na(x) =
1

2
N(x, y) + O(M(y, 2x)).

The analysis is therefore broken up into parts. First we show that N(x, y) (the main
term) tends to δE(a) li(x) as x→∞ for an appropriate choice of y in terms of x. Then we
must show that M(y, 2x) is small compared to the main term. We will do this by splitting
up this term into three chunks, each of which is handled separately.
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We choose y = 1
12

log x and let π(x, a, s) be the number of first degree primes p of k
with N(p) ≤ x which split completely in Ka

a,s. By the inclusion-exclusion principle, we
have

N(x, y) =
∑

(a,s)∈S∗y×T ∗y

µ(a)µ(s)π(x, a, s).

To estimate π(x, a, s) we use an effective Chebotarev density theorem.

Lemma 2.5.1 ([19], Theorem 1.1). Let L′/L be a normal extension of number fields with
n = [L′ : L]. Let d = disc(L′/Q). Let πC (x, L′) be the number of prime ideals of first degree
of L whose Frobenius automorphism lies in a given conjugacy class C of Gal(L′/L). If the
Dedekind zeta function of L′ satisfies the Riemann hypothesis, then∣∣∣∣πC (x, L′)− |C |

n
li(x)

∣∣∣∣� |C |x1/2(log x+ δ(L′)),

where the implied constant depends only on L and δ(L′) = log |d|
n

.

We set L = k, L′ = Ka
a,s and C = {1}, and apply the theorem directly.

Proposition 2.5.2 ([11], pp. 23-24).∣∣∣∣∣∣N(x, y)−
∑

(a,s)∈S∗y×T ∗y

µ(s)µ(a)

n(a, s)
li(x)

∣∣∣∣∣∣ = O(x3/4+ε)

for any ε > 0.

Proposition 2.5.3 ([11], pp. 24-26). The sum

δ =
∑

(a,s)∈S∗×T ∗

µ(s)µ(a)

n(a, s)

is absolutely convergent, where S∗×T ∗ is the set of all pairs (a, s) where s is any square-free
positive integer and a is square-free and any prime ideal dividing a must be of first degree.
The constant δ is equal to 2δE(a).

Further, as x→∞, we have

N(x, y) = δ li(x) + O

(
x log log x

log2 x

)
.
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Now, we need to estimate M(y, 2x). We do this by breaking up the interval (y, 2x)
into three parts (y, x1/2/(log2 x)), (x1/2/(log2 x), x1/2 log2 x) and (x1/2 log2 x, 2x). We will
handle the first interval with the Chebotarev density theorem [19, Theorem 1.1]. For the
second interval we use an analogue of the Brun-Titchmarsh theorem. For the last interval
we use the earlier result on the size of the coefficients of gβ and a counting argument.

Proposition 2.5.4 ([11], p. 26). Assuming the GRH, we have

M(y, x1/2/(log2 x)) = O(x/(log2 x)).

Using the large sieve in Schaal [28, Theorem 6], we can get a Brun-Titchmarsh type
result. Applying this result along with special considerations for the fields Kq, we get the
following proposition.

Proposition 2.5.5 ([11], pp. 26-27). We have

M(x1/2/ log2 x, x1/2 log2 x) = O

(
x log log x

log2 x

)
.

Using a similar idea as [16, p. 211-212], we complete the estimation of the remainder
terms.

Proposition 2.5.6 ([11], pp. 27-28). We have

M(x1/2 log2 x, 2x) = O

(
x

log2 x

)
.

Then combining the above propositions, we obtain

Na(x) =
δ

2
li(x) + O

(
x log log x

log2 x

)
.

Let δE(a) = 2δ, and the only thing to check is that δE(a) > 0.

2.6 Free subgroups of high rank

Let Γ ⊂ E(Q) be a free subgroup of rational points, with Γp the reduction of Γ modulo p.
Let Γ be freely generated by t rational points a1, . . . , ar. Let 〈·, ·〉 be the canonical height
pairing, and H(b) = 〈b, b〉, for b ∈ E(Q).
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Lemma 2.6.1 ([11], Lemma 13). The number of t-tuples (n1, . . . , nt) satisfying

H(n1a1 + · · ·+ ntat) ≤ x

is
(πx)t/2√
RΓ
(
t
2

+ 1
) + O(x(t−1)/2+ε),

where R = det(〈ai, aj〉) > 0

The following lemma has a Drinfeld module analogue given in [1, Proposition 5.1].

Lemma 2.6.2 ([11], Lemma 14). The number of primes p satisfying |Γp| ≤ y is O(y(t+2)/t).

Consider the extensions KΓ
q = Q(E[q], q−1a1, . . . , q

−1at). These extensions are Galois
over Q and their Galois group is isomorphic to a subgroup of GL2(Fq)oE[q]t. In [25],[26],
Ribet showed that for almost all q, the group Gal(KΓ

q /Q(E[q])) is isomorphic to E[q]t

under the map

(b1, . . . , bt) 7→ {(q−1a1, . . . , q
−1at)→ (q−1a1 + b1, . . . , q

−1at + bt)},

for (b1, . . . , bt) ∈ E[q]t. So each σ ∈ Gal(KΓ
q /Q) can be written as (γ, χ) where γ ∈ GL2(Fq)

and χ ∈ E[q]t. Denote by χ(Γ) the subgroup of E[q] generated by the coordinates of χ.

Lang and Trotter also proved the following result.

Lemma 2.6.3 ([20], p. 291). Let Cq consist of elements σ = (γ, χ) of Gal(KΓ
q /Q) such

that

1. ker(γ − 1) = E[q] and rank(χ(Γ)) = 0 or 1

2. ker(γ − 1) is a non-trivial cyclic group and χ(Γ) ⊂ Im(γ − 1).

For p - q∆, we have q | [E(Fp) : Γp] if and only if σp ∈ Cq where σp denotes the
Frobenius element of p in Gal(KΓ

q /Q).

As before, the number of primes p such that p | [E(Fp) : Γp] are at most o(x/ log x).

For s square-free, let

KΓ
s =

∏
q|s

KΓ
q .
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Let Cs be the conjugacy class of KΓ
s determined by the Cq’s, and let π(x, s) be the number

of primes p ≤ x such that σp(K
Γ
s /Q) ∈ Cs, let Gs = Gal(KΓ

s /Q). Let

δ(s) =
|Cs|
|Gs|

.

Proposition 2.6.1 ([11], p. 35). We have that δ(s) = O(s−t−1).

Let Ty denote the primes less than or equal to y, T the set of all primes and T ∗y , T
∗

the square-free products of elements of Ty and T respectively. Define NΓ(x, y), NΓ(x) and
MΓ(y, 2x) analogously to N(x, y), Na(x) and M(x, y) respectively.

Proposition 2.6.2 ([11], p. 36). We have that

NΓ(x) = NΓ(x, y) + O(MΓ(y, 2x)).

Proposition 2.6.3 ([11], p. 36). Choose y = (1
4

log x)1/(t+2). For some ε > 0, we get

NΓ(x, y) =
∑
s∈T ∗y

µ(s)δ(s) li(x) + O(x1−ε).

Proposition 2.6.4 ([11], p. 36). The infinite sum

δE(Γ) =
∑
s

µ(s)δ(s),

is absolutely convergent.

Let
V (i)
q = Q(E[q], q−1ai),

and notice that σp(K
Γ
q /Q) must satisfy the Lang-Trotter condition as before. The restric-

tion of Cq to V
(i)
q is of size O(q4) for all i.

Proposition 2.6.5 ([11], p. 37). Let

α =
1

10
log x− 2

5
log log x.

Then,
MΓ(y, xα) = o(x/ log x).
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Using Lemma 2.6.2 we can get the following bound.

Proposition 2.6.6 ([11], p. 37). If t ≥ 18 and A is large enough, we get

MΓ(xα logA x, 2x) = o(x/ log x).

Using a Brun-Titchmarsh theorem again, we can obtain the following proposition.

Proposition 2.6.7 ([11], p. 37). We have that

MΓ(xα, xα logA x) = o(x/ log x),

Therefore, assuming the GRH,

NΓ(x) = δE(Γ)x/ log x+ o(x/ log x),

if t ≥ 18.

2.7 Density calculation

A quick note on the density δE(Γ). If we take “Serre curves” for E, and Γ such that for
l 6= 2 the natural map Γ/lΓ → E(Q)/lE(Q) is injective, then δE(Γ) > 0, since δE(Γ) =
δ1− δ(2)δ1 = (1− δ(2))δ1, and δ1 has an Euler product, and δ(2) 6= 1. This works, because
the curves satisfy Gal(KΓ

q /Q) ∼= E[q]t o GL2(Fq) for q 6= 2 and KΓ
2 6= Q. If we can find

a curve satisfying the above and Γ with rank(Γ) ≥ 18, then we will have an example for
which to apply [11, Theorem 3].

Now, let us calculate the density δ =
∑
µ(a)µ(s)n(a, s)−1.

Lemma 2.7.1 ([11], Lemma 11). Let a = a1b and s = s1b where (a1, 6∆) = (s1, 6∆) = 1
and b, b | 6∆. Then

n(a, s) = n(a1, s1)n(b, b).

Now,

δ =
∑

a1,s1(a1,6∆)=(s1,6∆)=1
b,b|6∆

µ(a1)µ(s1)

n(a1, s1)
· µ(b)µ(b)

n(b, b)
,

So that,

δ =
∑
b,b|6∆

µ(b)µ(b)

n(b, b)
·
∑
a1,s1

µ(a1)µ(s1)

n(a1, s1

= δ0δ1.
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Let us now see that δ1 > 0.

δ1 =
∑
a1,s1

µ(a1)µ(s1)

n(a1)m(s1)
· ϕ(a1, s1)

=
∑
s1

µ(s1)

m(s1)

∏
q

(
1− ϕ(q, s1)

n(q)

)
.

Now,

δ1 =
∏
q

(
1− 1

n(q)

)∑
s1

µ(s1)

m(s1)

∏
q|s1

(
1− 1

N(q)

)(
1− 1

n(q)

)−1

=
∏

qinert in k
(q,6∆)=1

(
1− 1

q2 − 1

)

·
∏

q splits in k
(q,6∆)=1

(
1− 2

q(q − 1)
− 1

(q − 1)2
+

2

q(q − 1)2

)
.

In fact, we have to replace the above factor by (1− (q− 1)−1)2 for the finitely many q such
that q−1a ∈ E(Q). In any case, it is now clear that δ1 > 0.

We note that δ0 represents the density of primes πp which do not split completely in
any Ka

b,b, b, b | 6∆. Now consider the density θ of primes p which do not split completely in
any Kq or k(E[q]) for q, q | 6∆. Then δ0 ≥ θ. Class field theory will imply that if 2 and 3
are inert in k then θ > 0 (this works for k = Q(

√
−19),Q(

√
−43),Q(

√
−67),Q(

√
−163)).

If k = Q(
√
−11),Q(

√
−7),Q(

√
−2), then we must work harder to see when θ > 0.
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Chapter 3

Function Fields and Drinfeld
Modules

In this chapter, we explore some of the basic properties of function fields and Drinfeld
modules. Drinfeld modules are a function field analogue of the multiplicative group of
C and elliptic curves with complex multiplication. That is, the torsion points of C∗ tell
us a lot about the class field theory of the rational numbers. The torsion points of an
elliptic curve with complex multiplication can tell us about the class field theory of a
particular quadratic imaginary extension of the rational numbers. For function fields, we
know the class field theory explicitly for all function fields, just like we know it for Q and
k a quadratic imaginary extension of Q. This theory was first developed by Hayes [13] and
Drinfeld [6] independently, using what are now known as Drinfeld modules.

This important discovery illustrates a connection between the arithmetic of function
fields and classical groups such as the multiplicative group of the rational numbers and an
elliptic curve defined over the rational numbers.

3.1 Number theory in function fields

Let F be a field such that Fr ⊂ F and F ∩Fr = Fr, where Fr is an algebraic closure of Fr.
Let y ∈ F be a non-constant, that is y /∈ Fr. If [F : Fr(y)] is finite, then we say that F is
a global function field. In other words, a global function field is a field of transcendence
degree one over Fp with constant field Fr. Here r is a power of p = Char(F ).
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A prime ` of F is defined to be a pair (O`, R`) where O` ⊂ F is a discrete valuation
ring and R` its maximal ideal such that the field of fractions of O` is F . Equivalently,
we may associate to ` a surjective homomorphism v` : F ∗ → Z such that v`(x + y) ≥
inf(v`(x), v`(y)) for all x, y ∈ F ∗. With v` in hand, we set O` = {x ∈ F | v`(x) ≥ 0} ∪ {0}
and R` = {x ∈ F | v`(x) > 0} ∪ {0}. The homomorphism v` is called a valuation. For
convenience, we sometimes use the convention that v`(0) =∞. Given a valuation v on F ,
we may form a (normalized) absolute value | · |v by the rule

|x|v = r−v(x).

We need to briefly mention some algebraic geometry. We can then discuss the Riemann-
Roch theorem. See [27, Chapters 2 and 5]. For a prime `, we set deg ` = [O`/R` : Fr]. A
divisor of F is a formal sum

D =
∑
` prime

n` · `,

where n` ∈ Z, and all but finitely many n` = 0. The degree of D is

degD =
∑
` prime

n` · deg `.

Further, set v`(D) = n`.

For x ∈ F , define div(x) by the formula

div(x) =
∑
` prime

v`(x) · `,

which is well-defined, see [27] for details.

Also, note that div(x) = 0 if and only if x ∈ Fr.
For a divisor D of F , define an Fr-vector space L(D) by the following

L(D) = {x ∈ F | v`(div(x) +D) ≥ 0 for all primes `} ∪ {0}, .

Let l(D) = [L(D) : Fr], which is finite.

Now let us state the Riemann-Roch theorem. A divisor class of F is an equivalence
class of divisors, under the equivalence that D′ ≡ D if D −D′ = div(y) for some y ∈ F .

Theorem 3.1.1 ([27], Theorem 5.4, Riemann-Roch Theorem). There exists a divisor class
C, called the canonical divisor class and a non-negative integer g, called the genus, such
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that for any divisor A of F and C ∈ C, we have

l(A) = deg(A)− g + 1 + l(C − A).

The Riemann-Roch theorem allows one to prove the following two results. Again, see
[27, Chapter 5] for more details. Let hF be the number of divisor classes of degree 0. Then
hF is finite if F is a global function field. Let aN be the number of primes of F of degree
N , then

aN =
rN

N
+ O

(
rN/2

N

)
.

The fields F as above are seen to be analogous to number fields. If we take F = Fr(T ) for
an indeterminate T , then F is similar to the rational numbers. The integers are analogous
to the ring A = Fq[T ] ⊂ F . In general, let us fix a rational prime ∞ of F . Actually,
the prime ∞ need not be rational, but it simplifies things a bit, and we will not need to
consider the case where ∞ is not rational in this thesis. Let A ⊂ F be defined by

A = {x ∈ F | v`(x) ≥ 0 for all ` such that ` 6=∞}.

Let A be the ring of functions of F that are regular everywhere except possibly ∞. The
units of A are exactly equal to F∗r. The prime ∞ is called the infinite prime of F ; all
others are called finite primes. For a divisor D of F , set D0 to be the divisor such that
v`(D0) = v`(D) for all ` 6=∞ and v∞(D0) = 0.

For f ∈ A, set deg f = [A/f : Fr]. Then because ∞ is rational deg f = deg(div(f))0.
Finite primes ` of F are in one to one correspondence with prime ideals of A.

Example 3.1.1. Let A = Fr[T ] and F = Fr(T ), for an indeterminate T .

Example 3.1.2. Let F = Fr(x)[y]/(y2 − f(x)), where deg f = n ≥ 3 and f has n distinct
roots, and 2 - r, deg f . In this case, the Dedekind domain A = Fr[x, y] is a suitable choice.
In this case, the field F is a quadratic extension of Fr(x) and the integral closure of Fr[x]
in F is A.

We may think of Fr[T ] as the function field version of Z. The second example we may
think of being like the ring of integers of a quadratic imaginary extension of Q. In this
way, we get many good candidates for complex multiplication. These two examples will
give many examples of Drinfeld modules for which we may apply our theorems, yet they
are relatively uncomplicated.
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3.2 Additive polynomials

Let L be a field of characteristic p. Let f(x) ∈ L[x] be a polynomial in one variable
over L. We say f(x) is additive if f(a + b) = f(a) + f(b) for all a, b ∈ L. The set of
additive polynomials of L is a ring, where addition is given by addition of polynomials and
multiplication is given by (f · g)(x) = f(g(x)).

Let τp ∈ L[x] be the polynomial xp. Then τp is an additive polynomial, and it generates
a subring of the ring of additive polynomials, which we denote by L{τp}. If L is a finite field,
then this ring is not the full ring of additive polynomials. For example, take g(x) = (xp−x)n

for a non-negative integer n. Then g is additive but g is not always in L{τp}. Let L be an
algebraic closure of L. We say that f ∈ L[x] is absolutely additive if f(a+ b) = f(a)+f(b)
for all a, b ∈ L.

Proposition 3.2.1 ([10], Proposition 1.1.5). Let L be a field with infinitely many elements.
Then the ring of additive polynomials of L is equal to L{τp}.

Thus, the ring of absolutely additive polynomials of L is equal to L{τp} for any L of
characteristic p. If L is infinite, the notions of absolutely additive and additive coincide.
From now on, we only consider absolutely additive polynomials (even if L is finite).

Now suppose that Fr ⊂ L. Let τ be the map x → xr. Then the subring of L{τp}
generated by τ consists of polynomials which are Fr-linear. This is because τa = arτ for
a ∈ L.

Let f ∈ L{τ}, then we may interpret the coefficients of f in two different ways. First,
the twisted polynomial f may be represented as a polynomial in L[x], in this case as

f(x) = a0x+ a1x
r + a2x

r2 + · · ·+ anx
rn ,

so that deg f = rn for some integer n. If we represent f in this way, we will write f(x).
Secondly, we may represent f as a polynomial in L{τ}, in which case write

f(τ) = a0τ
0 + a1τ + · · ·+ anτ

n.

If we think of it this way, then we will write degτ (f) = n, so that deg f = rdegτ (f).

Proposition 3.2.2 ([10], Theorem 1.2.1). Let f(x) be a separable polynomial. Then f is
absolutely additive if and only if the zeroes of f form a subgroup of L. Further, we have
that f is Fr-linear if and only if the zeroes of f form an Fr-subspace of L.
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Let us study the polynomials fW further [10, Section 1.3]. We want to describe how
the polynomial fW behaves when replacing W by Fr subspaces. To do this we will use
the Moore determinant, which is a τ version of the classical Vandermonde determinant.
In particular, Goss [10, p. 9] says “It would be amusing to know the mechanics of trans-
forming the computation of the Moore determinant (i.e., Corollary 1.3.7) into the usual
Vandermonde computation.” We give the computation in this way.

Define a vector v(x) by v(x) = (1, x, x2, . . . , xn−1)t, where vt means the transpose of
the vector v. Define

A(x1, . . . , xn) = (v(x1), . . . , v(xn)).

Then
det(A(x1, . . . , xn)) =

∏
j<i

(xi − xj).

For now, let us consider W ⊂ L, a field with Fr ⊂ L, and W a Fr subspace of L.

Lemma 3.2.1 ([10], Lemma 1.3.1). Let {w1, . . . , wn} ⊂ W . The set {w1, . . . , wn} is
linearly independent over Fr if and only if, for every i ≥ 0, the set

{τ i(w1), . . . , τ i(wn)}

is also linearly independent over Fr.

We now define a determinant which should tell us when a set is linearly independent
over Fr.

Definition 3.2.1. Set

∆(w1, . . . , wn) := ∆r(w1, . . . , wn)

:= det


w1 · · · wn
wr1 · · · wrn
...

...

wr
n−1

1 · · · wr
n−1

n


= det

 τ 0(w1) · · · τ 0(wn)
...

...
τn−1(w1) · · · τn−1(wn)

 .

We call ∆(w1, . . . , wn) the Moore determinant.
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Consider the ring L{τ1, . . . , τn} where τi(x1, . . . , xn) = τ(xi) for indeterminates x1, . . ..
Then τiτj = τjτi and τjα = αrτj. The Vandermonde determinant above has coefficients in
Fr, so the Moore determinant satisfies

∆(x1, . . . , xn) = V (τ1, . . . , τn)(x1, . . . , xn).

We therefore have the identity

∆(x1, . . . , xn) =

(∏
i<j

(τi − τj)

)
(x1, . . . , xn).

To study the Moore determinant in terms of the Vandermonde determinant, let us
define maps τi : Lm → L by τi(x1, . . . , xm) = xri . Then the pointwise product gives us
a ring L{τ1, . . . , τm} of additive polynomials from Lm to L, and the τi’s commute with
each other. Also, we have that L{τi} ⊂ L{τ1, . . . , τm} is a copy of L{τ}. Now, the Moore
determinant can be thought of as

det(τ j−1
i (~x)1≤i,j≤m)

Now, the regular Vandermonde matrix will give us that this determinant is equal to (be-
cause the τi’s commute). ∏

i<j

(τi − τj),

which defines an additive function from km to k. In fact it is Fr-linear.

We have that ∆(x1, . . . , xm, xm+1) = (
∏m

i=1(τm+1 − τi))∆(x1, . . . , xm). Using this form
we can prove that if {w1, . . . , wm} is a basis of some subspace W of L, over Fr then
∆(w1, . . . , wm, x) is an additive polynomial of degree rm. But rm different roots of the
polynomial are given by α1w1 + · · ·+ αmwm (this is easy to check). Let

fW (x) =
∏
w∈W

(x− w).

Thus, we have the equality ∆(w1, . . . , wm, x) = fW (x)c for some constant c. Now fW is
monic and the leading term of ∆(w1, . . . , wm, x) is ∆(w1, . . . , wm). Now, this implies that
∆(w1, . . . , wm) = 0 if and only if w1, . . . , wm are linearly dependent vectors over Fr.

We will use the following proposition later.

Proposition 3.2.3 ([10], Proposition 1.3.5 part 3). Let W be a finite dimensional Fr
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subspace of L. Let {w1, . . . , wm} be a basis of W , and set Wi be the span of {w1, . . . , wi} over
Fr. Let fWi

=
∏

w∈Wi
(x−w), and fW = fWm. Let Wi be the span of fWi

(wi+1), . . . , fWi
(wm).

Then
fW (τ) = fWi

(τ)fWi
(τ).

Proof. Both polynomials have the same set of roots, as well as the same leading term.

Definition 3.2.2. Let f, g ∈ L{τ}.

1. We say that f(τ) is right divisible by g(τ) if there exists h(τ) ∈ L{τ} such that
f(τ) = h(τ) · g(τ).

2. We say that f(τ) is left divisible by g(τ) if there exists h(τ) ∈ L{τ} such that f(τ) =
g(τ)h(τ).

Proposition 3.2.4 ([10], Proposition 1.6.2). Let f, g ∈ L{τ} with g(τ) 6= 0. Then there
exists h, r ∈ L{τ} such that degτ r < degτ g and

f(τ) = h(τ)g(τ) + r(τ).

Moreover, the polynomials h and r are uniquely determined.

Proof. Proceed just as in the classical division algorithm for polynomials.

Corollary 3.2.1 ([10], Corollary 1.6.3). Every left ideal of L{τ} is principal.

Definition 3.2.3. We say that L is perfect if and only if τ(L) = L.

Proposition 3.2.5 ([10], Proposition 1.6.5). Let L be perfect and let f, g ∈ L{τ} with
g 6= 0. Then there exists h, r ∈ L{τ} with degτ r < degτ g and

f(τ) = g(τ) · h(τ) + r(τ).

Further, the polynomials h and r are uniquely determined.

Proof. The perfectness of L allows us to solve for h in the usual way.

Corollary 3.2.2 ([10], Corollary 1.6.5). If L is perfect, then every right ideal of L{τ} is
principal.

Definition 3.2.4. Let f, g ∈ L{τ}. The left ideal generated by f, g has a monic generator
(f(τ), g(τ)) ∈ L{τ}, called the greatest common divisor of f and g.
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3.3 Valued fields and Newton polygons

For a global function field F and valuation v` of F , it is often useful to consider the
completion of F at v`, denoted by F`. In this section, we provide a brief overview of non-
archimedean analysis. We want to focus on the theory of Newton polygons, taken from
[10].

Let L be a field of characteristic p, equipped with a (non-archimedean) valuation v
such that L is complete with respect to v. Let Ov = {x ∈ L | v(x) ≥ 0} ∪ {0} and
Rv = {x ∈ L | v(x) > 0}∪{0}. Now assume that Ov/Rv is a finite field with #Ov/Rv = r.
We define an absolute value | · | on L by |x| = r−v(x), for 0 6= x ∈ L and |0| = 0. Set
v(0) =∞.

If L′/L is any finite extension of L, we may define a unique extension of v to L′ by the
following formula

v(x) =
1

[L′ : L]
v(NL′

L (x)).

In this way, we may extend the valuation v to a fixed algebraic closure L of L.

Proposition 3.3.1 ([10], Proposition 2.1). Let L be a fixed algebraic closure of L together

with the canonical extension of v. Let L̂ be its completion with respect to v. Then L̂ remains
algebraically closed.

Let {aj}j≥0 be a sequence in L. For the infinite sum
∑

j≥0 aj, we define the Nth partial

sum as SN =
∑N

j=0 aj, and we say the sum
∑

j≥0 aj converges if limN→∞ SN exists and
equals S. We then put

∑
j≥0 aj = S.

Proposition 3.3.2 ([10], Proposition 2.2). The infinite sum
∑

j≥0 aj converges to an ele-
ment of L if and only if limj→∞ aj = 0.

Proof. The “only if” is just like the proof from calculus. The “if” part follows because
|Sn| ≤ max |ai| → 0.

Until the end of this section assume that L is complete and algebraically closed.

Now, let us consider the power series f(x) =
∑

j≥0 ajx
j. Then f converges at x = α if

and only if
lim
j→∞

ajx
j = 0,
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or in terms of v,
lim
j→∞

v(aj) + jv(x) =∞.

Definition 3.3.1. Let
ρ(f) = − lim

j→∞
v(aj)/j.

The limit ρ(f) is called the order of convergence of f .

Proposition 3.3.3 ([10], Proposition 2.4). Let α ∈ L. Then f converges at α if v(α) >
ρ(f) and diverges at α if v(α) < ρ(f).

Definition 3.3.2. Let f(x) =
∑

j≥0 ajx
j ∈ L[[x]]. Let S =

⋃
i≥0Ai, where Ai = {(i, y) ⊂

R2 | y ≥ v(ai)}. The Newton polygon of f is defined to be the convex hull of S.

Proposition 3.3.4 ([10], Proposition 2.8). Let {mi} be the sequence of slopes of the Newton
polygon of f(x) =

∑
j≥0 ajx

j. Then {mi} is monotonically increasing and

− lim
i→∞

mi = ρ(f).

Proposition 3.3.5 ([10], Proposition 2.9). Let t > ρ(f). There are two possibilities.

1. If no side of the Newton Polygon of f(x) has slope −t, then there are no zeroes of
f(x) on the circle v(x) = t.

2. If the Newton Polygon of f(x) has a side with slope −t, then f(x) has exactly m
zeroes on v(x) = t.

Here, the number m refers to the length of the projection of the side of the Newton polygon
of slope −t onto the x-axis.

Definition 3.3.3. We say that f(x) =
∑

j≥0 ajx
j is entire if it converges for all x ∈ L, or

equivalently if ρ(f) = −∞.

Proposition 3.3.6 ([10], Proposition 2.13). If f is an entire function with no zeroes, then
f is constant.

Proof. This follows from looking at the Newton polygon of f (if f is non-trivial, then there
is a non-trivial side of the Newton polygon).
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Theorem 3.3.1 ([10], Theorem 2.14). Let f(x) be an entire function and let

{λ1, . . . , λt, . . .}

be its non-zero roots in L. Then

lim
t→∞

v(λt) = −∞,

and
f(x) = cxn

∏
t

(1− x/λt),

where n = ordx=0(f).

Conversely, if {λt} is as above and c ∈ L, then the above product defines an entire
function.

Proof. The above product defines an entire function. If f is an entire function not equal to
the above product, then the quotient defines a non-constant entire function with no zeroes,
a contradiction.

3.4 Drinfeld modules

Let F be a global function field, with fixed rational prime ∞, and A the ring of functions
of F regular everywhere except possibly ∞.

A field K equipped with an Fr-homomorphism i : A → K is called an A-field. In
particular, the field K has characteristic p. As any A-field has the same characteristic, we
say that ker(i) ⊂ A is the characteristic of K as an A-field. If ker(i) = 0, then K has
generic characteristic, otherwise it has finite characteristic.

Example 3.4.1. Let A = Fr[T ] and let K be any field containing A. By setting i : A→ K
to be the injection map, we make K into an A-field of generic characteristic. That is, we
have ker(i) = 0.

Example 3.4.2. Let A = Fr[T ] and let K = Frn. Let P be a monic irreducible of A of
degree n. Then i : A → K given by x → x (mod P ) turns Frn into an A-field with finite
characteristic. Further, we have ker(i) = (P ).

Recall that K{τ} is the ring of (absolutely) Fq-linear polynomials over K. For each
f ∈ K{τ}, write f = τ 0a0 + · · ·+ τnan, set D(f) = a0.
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Definition 3.4.1. A Drinfeld module defined over K is an Fq-linear homomorphism φ :
A→ K{τ} such that

1. D(φx) = i(x) for all x ∈ A, and

2. φx 6= i(x)τ 0 for some x ∈ A.

From now on, we use the standard convention that for a Drinfeld module φ : A → K{τ},
φx ∈ K{τ} is the image of x under the homomorphism φ

Thus a Drinfeld module gives us an A-module action on the field K. In fact, any field
L with K ⊂ L becomes a Drinfeld module via φ, we denote this Drinfeld module by φ(L).
It is often helpful to think of the A-action on K similar to the Z action on the points of
an elliptic curve E.

3.5 Fundamental structures for Drinfeld modules

Let φ, ψ be two Drinfeld modules defined over K. Let f ∈ K{τ}. We say that f is a
morphism from φ to ψ if f · φa = ψa · f , as polynomials in K{τ}, for all a ∈ A. Non-zero
morphisms are called isogenies.

Let I be an ideal of A. Let K be a fixed algebraic closure of K. The I-torsion of φ is
given by

φ[I] = {x ∈ K | φa(x) = 0 for all a ∈ I}.

Let IhA = (a), where hA is the class number of F . Then φ[I] is a subset of the zeroes of
φa, which is a finite set. Therefore, the torsion φ[I] is a finite Fq vector space, and so is the
zero set of a monic, Fq-linear polynomial, say φI ∈ K{τ}. For a ∈ A, define φ[a] = φ[(a)].
To compute φI , write I = (i1, i2) (because A is Dedekind). Then set φI to be the monic
generator of the left ideal of K{τ} generated by φi1 and φi2 . This works because K{τ}
has a right division algorithm.

In the theory of elliptic curves, the kernel of the multiplication by n map has a very
strict structure. We will see that this is true for Drinfeld modules as well. Recall that if
E/K is an elliptic curve with n coprime to Char(K), we have

E[n] ∼= (Z/nZ)2.

Proposition 3.5.1 ([10], Proposition 4.5.3). There is a positive integer d such that if an
ideal I is coprime to the characteristic of K, denoted by ker(i), we have that φ[I] ∼= (A/I)d.
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Definition 3.5.1. The positive integer d appearing above is called the rank of the Drinfeld
module φ.

It remains to deal with the case that ker(i) = p 6= 0.

Proposition 3.5.2 ([10], Proposition 4.5.7). Suppose that ker(i) 6= 0, then there exists a
positive integer h such that

φ[pj] ∼= (A/pj)d−h.

Definition 3.5.2. The positive integer d appearing in the above propositions is called the
rank of the Drinfeld module φ. If ker(i) 6= 0, then the positive integer h is called the height
of φ, otherwise φ is said to have height h = 0.

Definition 3.5.3. Let φ, ψ be two Drinfeld modules over K. If f ∈ K{τ} satisfies

fφa = ψaf.

then we say that f is a morphism from φ to ψ defined over K.

If f is non-zero then φ and ψ must have the same rank, say d. Let the set of all such
morphisms be denoted HomK(φ, ψ). If φ = ψ, we denote the set EndK(φ). The set of all
morphisms defined over K is denoted Hom(φ, ψ), and when φ = ψ we have End(φ).

3.6 Complex Multiplication

The main reference for this section is [10, Chapter 4.7].

Proposition 3.6.1 ([10], Proposition 4.7.1). Let f ∈ K{τ} be a morphism from φ to ψ.
Then f is an isomorphism if and only if degτ f(τ) = 0.

Proposition 3.6.2 ([10], Proposition 4.7.2). Let f ∈ K{τ} be a morphism from φ to ψ,
a ∈ A, and α ∈ K be an a-division point of φ. Then f(α) is an a-division point of ψ.

Corollary 3.6.1 ([10], Corollary 4.7.3). Let f ∈ K{τ} be a morphism form φ to ψ, I ⊂ A
be an ideal, and let α ∈ φ[I]. Then f(α) ∈ ψ[I].

Proposition 3.6.3 ([10], Proposition 4.7.4). Let L ⊃ K be algebraically closed. Then the
natural inclusion HomK(φ, ψ) ↪→ HomL(φ, ψ) is an equality.

Proposition 3.6.4 ([10], Proposition 4.7.6). Suppose that K has generic characteristic,
so that F ⊂ K. Then EndK(φ) is commutative.
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Theorem 3.6.1 ([10], Theorem 4.7.8). The set of morphisms EndK(φ) is a projective
A-module of rank at most d2.

Proposition 3.6.5 ([10], Proposition 4.7.13). Let f : φ → ψ be an isogeny. Then there
exists an isogeny f̂ : ψ → φ such that

f̂f = φa,

for some non-zero a ∈ A.

Corollary 3.6.2 ([10], Corollary 4.7.14). 1. ff̂ = ψa.

2. Isogeny gives rise to an equivalence relation on Drinfeld modules over K.

Corollary 3.6.3 ([10], Corollary 4.7.15). The tensor product EndK(φ) ⊗A F is a finite
dimensional division algebra over F .

Corollary 3.6.4 ([10], Corollary 4.7.16). Let f : φ → ψ be an isogeny. Then EndK(φ)
and EndK(ψ) have the same rank as A-modules.

Proposition 3.6.6 ([10], Proposition 4.7.17). The tensor product EndK(φ) ⊗A F∞ is a
finite dimensional division algebra over F∞.

Let L be a field containing F . Let O ⊂ L be an order above A. That is, the field of
fractions of O is equal to L, all elements of O are integral over A and O contains A. Let
Õ be the ring of A integers. The conductor of O, denoted by c, is the largest ideal of Õ
which is also an ideal of O.

Proposition 3.6.7 ([10], Proposition 4.7.19). Let K be an A-field and φ a Drinfeld module
over K. Let O inject into EndK(φ) over A. Then there is a Drinfeld module ψ over K
which is isogenous to φ and such that Õ ∼= EndK(ψ).

3.7 Reduction of Drinfeld modules

The main reference for this section is [10, Chapter 4.10].

Let K be an A-field equipped with a non-trivial valuation v. We assume that v(x) ≥ 0
for all x ∈ A. This is because we want to talk about reduction modulo v, and that cannot
happen if v lies above ∞.

Let Ov = {x ∈ K | v(x) ≥ 0} and Rv the maximal ideal of Ov. We know that
i(A) ⊂ Ov. Set Fv = Ov/Rv. Let φ be a Drinfeld module of fixed rank d > 0.
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Definition 3.7.1. 1. We say that φ has integral coefficients if the coefficients of φa
are in Ov for all a ∈ A and the reduction modulo Rv of these coefficients defines a
Drinfeld module of some rank d1, where 0 < d1 ≤ d, over Fv. Denote the reduced
Drinfeld module (our notation) by φ(Fv).

2. We say that φ has stable reduction at v if there exists a Drinfeld module ψ over K
with ψ isomorphic to φ over K and ψ has integral coefficients.

3. We say that φ has good reduction at v if it has stable reduction at v and in addition
φ(Fv) has rank d.

4. We say that φ has potential stable (resp. potential good) reduction at v if there exists
an extension (L,w) of (K, v) such that φ has stable (resp. good) reduction at w.

Let f(τ) =
∑t

j=0 cjτ
j ∈ K{τ}. We set

v(f(τ)) = min{v(cj)/(r
j − 1) | j > 0}.

Lemma 3.7.1 ([10], Lemma 4.10.2). Let u ∈ K∗. Then the Drinfeld module uφu−1 has
integral coefficients at v if and only if

v(u) = min{v(φa) | a ∈ A\Fr}.

Proposition 3.7.1 ([10], Proposition 4.10.3). Let φ be a Drinfeld module over K as above.
Then there is a natural number ev(φ) which is prime to p such that the following two
properties are equivalent for a finite extension (L,w) of (K, v):

1. φ has stable reduction at w.

2. The index of ramification of w over v is divisible by ev(φ).

In fact, we can take w to be tamely ramified over v, which is very important in different
calculations.

Corollary 3.7.1 ([10], Corollary 4.10.4). Every φ has potential stable reduction in a tamely
ramified extension. Further if the rank of φ is 1, then φ has potential good reduction
everywhere.

Actually, we can say more about rank 1 Drinfeld modules. Let ηφ(x) be the leading
coefficient of φx for x ∈ A.

Corollary 3.7.2 ([14], Corollary 7.4). Suppose ψ has rank 1, and ηψ(x) is a unit of Ov

for all x ∈ A. Then ψ has integral coefficients.
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3.8 Analytic theory

Let F∞ be the completion of F at ∞. Let C∞ be the completion of the algebraic closure
of F∞.

For a prime ` 6=∞, let F` be the completion of F at ` and C` be the completion of the
algebraic closure of F`.

Let L be a complete subfield of C∞ or C` which contains either F` or F∞.

Theorem 3.8.1 ([10], Theorem 4.6.9). Let φ be a Drinfeld module over L ⊂ C∞ of rank
d > 0. Then there is an L-lattice Λ := Λψ which is Gal(Lsep/L) invariant and of rank d
such that φ is the associated Drinfeld module to the lattice Λ. Moreover, the association
φ→ Lφ gives rise to an equivalence of categories between the category of Drinfeld modules
of rank d over L and the category of L-lattices of rank d (equipped with L morphisms of
L-lattices).

Theorem 3.8.2 ([6], Proposition 7.2). The isomorphism classes of rank d Drinfeld modules
defined over L ⊂ C` are in one-to-one correspondence with the isomorphism classes of
pairs (φ,Λ), where φ is a Drinfeld module over L of rank d1 (d1 ≤ d) with potentially good
reduction, and Λ is a lattice in L of rank d− d1 which is Gal(Lsep/L) invariant.

Remark 3.8.1. The L-lattices of rank 1 are in correspondence to the set of fractional
ideals of A under the equivalence C D if C = xD for some x ∈ F . Thus, the above result
says that there are hA (the class number of A) isomorphism classes of Drinfeld modules,
for each isomorphism class of ideals U, we may associate a Drinfeld module φU.

We will first consider the exponential function of a lattice in a local non-archimedean
field. Let L be a local field, with discrete valuation v. That is L is complete and locally

compact with respect to v. Suppose also that A ⊂ L. Let L̂ be the completion of the
algebraic closure of L. Suppose that F ⊂ L.

Definition 3.8.1. Let Λ be an A-submodule of L̂. We say that Λ is a L lattice if there is
a norm | · | on Λ which satisfies |a · λ| = rdeg a|λ| for a ∈ A, λ ∈ Λ and such that

1. Λ is finitely generated as an A-module

2. Λ is discrete w.r.t. the norm | · |.

3. Λ ⊂ Lsep and is Gal(Lsep/L) stable.
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Definition 3.8.2. Let Λ be as above. Set

eΛ(x) = x
∏
α∈Λ
06=α

(
1− x

α

)
.

Proposition 3.8.1 ([10], Proposition 4.2.4). The function eΛ is entire and has a Taylor
expansion around x = 0 with coefficients in L.

Proof. That eΛ is entire follows from the discreteness of Λ. Proving that the coefficients
are in L results from the Gal(M sep/M) action on Λ. One can also look at eΛ as being
the limit of polynomials with coefficients in L (for example, consider a polynomial whose
newton polygon approximates that of eΛ).

Proposition 3.8.2 ([10], Proposition 4.2.5). The function eΛ is Fr-linear.

Proof. Since eΛ is the limit of Fr-linear polynomials, we have that eΛ is Fr-linear.

Let d be the rank of Λ as a finitely generated projective A-module. Let 0 6= a ∈ A.

Theorem 3.8.3 ([10], Theorem 4.3.1). We have the following equality of entire functions

eΛ(ax) = aeΛ(x)
∏

06=α∈a−1Λ/Λ

(1− eΛ(x)/eΛ(α)).

Proof. Let

f(x) = x
∏

06=α∈a−1Λ/Λ

(1− x/eΛ(α)).

Then we can check that f is Fr-linear, so f ′(x) ≡ 1. The entire functions af(eΛ(x)) and
eΛ(ax) have the same roots and the same derivative, so they are equal.

Up until now we have not specified the field L. We need the above theory for two
related uses. If we set L ⊂ C∞, then we will be able to obtain the uniformization theory
for Theorem 3.8.1. If we take L ⊂ C, then we can obtain the uniformization theory for
Theorem 3.8.2. We will also return to these ideas when we review Gardeyn’s paper [9],
in Chapter 4.
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3.9 Class field theory

We give an overview [14]. Also, see [10, Chapter 7],[7],[15].

First, let us determine the minimal field of definition for a rank 1 Drinfeld module. We
will see that this field is an abelian extension of F , for which ∞ splits, and with Galois
group equal to Pic(A).

Then we will develop the cyclotomic theory for sgn-normalized rank 1 Drinfeld modules,
where∞ is assumed to be rational. Notice that in this case, the sgn-normalized treatment
summarised in [10, Chapter 7] corresponds to the treatment given by Hayes in [14]. If ∞
is not rational, then it is necessary to follow [10, Chapter 7] or Hayes [15]. The theory of
Drinfeld modules can even be developed for O an order of A, as done by Hayes [14].

Let φ be a Drinfeld module φ : A→ C∞{τ}.

Definition 3.9.1. Let K be a subfield of C∞ containing F . We say that φ is defined over
K or that K is a field of definition for φ if φ is isomorphic over C∞ to a Drinfeld module
φ′ : A→ C∞such that φ′x has coefficients in K for every x ∈ A.

Proposition 3.9.1 ([14], Theorem 6.6). There is a field I(φ) contained in every field of
definition of φ. The field I(φ) is itself a field of definition for φ.

Definition 3.9.2. Let A be an ideal of A. The following equation defines a Drinfeld module
(A ∗ φ):

φA · φx = φ′xφA.

Corollary 3.9.1 ([14], Corollary 6.7). If B is an ideal of A, then I(B ∗ φ) = I(φ).

Let φ be a rank 1 Drinfeld module defined over F∞ and let HA be the field of definition
I(φ). Let σ be an automorphism of C∞ which fixes F . Then σφ defined by (σφ)x = σ(φx)
is a Drinfeld module of the same rank as φ. Further

σ(B ∗ φ) = B ∗ (σφ).

Proposition 3.9.2 ([14], Proposition 8.1). The automorphism σ acts naturally on the
isomorphism classes of rank d Drinfeld modules defined over C∞, denoted by IsomC∞(d).
In particular, we can take d = 1. Further, this action commutes with that of Pic(A) given
by the star operator.

From now on, we are interested only in rank 1 Drinfeld modules. From now on ψ
denotes a rank 1 Drinfeld module. This is because in Chapter 4, we will set ψ to be a
rank 1 Drinfeld module which is CM for some φ of rank 2.
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Proposition 3.9.3 ([14], Proposition 8.4). The extension HA/F is finite and and Galois.
Further, the prime ∞ splits completely in HA.

Proof. We know that HA ⊂ F∞. Further, the field I(ψB) remains invariant under the
action of ∗, and hence it is generated by the coefficients of ψBy for any choice of y non-
constant and B. Therefore, HA is finite, and any finite extension of F contained in F∞ is
separable.

Let GA = Gal(HA/F ), then we can see that GA acts faithfully on IsomC∞(1) and so
GA can be viewed as a subgroup of Pic(A), and is therefore abelian.

Theorem 3.9.1 ([14], Theorem 8.8). We have that the group GA is isomorphic to Pic(A).
A prime P of A splits completely in HA/F if and only if P is principal.

Theorem 3.9.2 ([14], Theorem 8.10). The field HA is unramified of degree hA over F and
has field of constants Fr.

Definition 3.9.3. Two Drinfeld modules ψ, ψ′ defined over HA are said to be equivalent
if there exists w ∈ HA such that wq−1 ∈ HA and ψ′ = w−1ψw.

Proposition 3.9.4 ([14], Proposition 10.4). In our setting, that is deg∞ = 1, any rank 1
Drinfeld module defined over HA is equivalent to a Drinfeld module with coefficients in O′

which is the integral closure of A in HA. Recall that a Drinfeld module has coefficients in
O′ if the leading coefficient of each ψy is in Fr = O′× and all other coefficients are in O′.

Proposition 3.9.5 ([14], Proposition 10.7). Every ideal B of A generates a principal ideal
in O′.

From now on, let ψ be a Drinfeld module defined over HA which has coefficients in O′

(recall that this means that the leading coefficient of ψy is in Fr and all other coefficients
are in O′).

Let GB = Gal(HA(ψ[B])/HA), then we have a natural map

ψ : GB → (A/B)∗.

Let ϕ(B) = #(A/B)∗.

Proposition 3.9.6 ([14], Proposition 9.1). Suppose B = P e, where P is a prime of A.
Let P be a prime of HA which sits over P . Then HA(ψ[B])/HA is totally ramified at P
and its degree equals ϕ(B).
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Theorem 3.9.3 ([14], Theorem 9.2). Let B be an ideal of A. Then

Ψ : Gal(HA(ψ[B])/HA)→ (A/B)∗

is an isomorphism.

3.10 Drinfeld modules over global function fields

Let us define our frames of reference for the rest of the paper. We will be considering two
types of Drinfeld modules of rank 2. For the first type, we have a function field F , rational
point ∞ and A such that F ⊂ k with [k : F ] = 2, k/F separable, and ∞ ramifies in k.
Further, the field of constants of k and F are equal to Fr and finally the characteristic of
F is not equal to 2. Set O to be the integral closure of A in k.

Under these assumptions, let φ be a rank 2 Drinfeld module defined over K ⊂ HO,
with EndHO(φ) ∼= O, with action given by a rank 1 Drinfeld module ψ : O → O′{τ} with
coefficients in O′ (again the leading coefficient of ψy is in Fr), where O′ is the integral closure
of O in HO. Certainly, any Drinfeld module of rank 2 that has complex multiplication by
a sgn-normalized Drinfeld module ψ defined over HO can also be defined over HO. In case
that it is defined over a strictly smaller subfield, we let K ⊂ HO be the minimal field of
definition for φ.

Our second possible situation is that A = Fq[T ] and F = Fq(T ) and φ is a rank 2
Drinfeld module defined over F . Further End(φ) = A.

In the first case, the class field theory developed by Drinfeld and Hayes provides a
powerful tool towards solving our formulation of the Lang-Trotter conjecture. This is also
seen in [18].

In the second case, we take the method of higher rank free submodules of the module
of rational points, as in [11],[1]. To do this we need to use the theorem of Pink and
Rutsche[23, Theorem 0.1] and the Kummer theory given by Ribet in [25],[26]. Further,
Poonen’s theorem,[24, Theorem 1] will give us the structure of the module of rational
points.

For a prime ideal P of A, let P h = (a) for some h, a, and let

TP (φ) = lim
←i

φ[ai] = lim
←j

φ[P j]

be the P -adic Tate-module of φ. Let AP be the completion of A at P (the same as the
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P -adic integers). Then TP (φ) is a free AP module of rank d (the rank of φ) if P is coprime
to the characteristic of L.

Let GK = Gal(Ksep/K), then there is a continuous Galois representation

ρP : GK → AutAP (TP (φ)) ∼= GLr(AP ).

Theorem 3.10.1 ([34], Theorem 0.1). The GK module TP (φ) is semi-simple.

Let Af
F be the ring of finite adeles of F and consider the adelic representation

ρad : GK →
∏
P 6=∞

GLr(AP ) ⊂ GLr(Af
F ).

Theorem 3.10.2 ([23], Theorem 0.1). Let φ be a Drinfeld A-module of rank d over a
finitely generated field K of generic characteristic. Assume that EndK(φ) = A. Then the
image of the adelic representation

ρad : GK →
∏
P 6=∞

GLr(AP ) ⊂ GLr(Af
F )

is open.

This is basically a Drinfeld analogue of Serre’s result [30] for elliptic curves without
complex multiplication.

The following result is proved by Poonen as [24, Theorem 1] by developing a theory
of local heights for Drinfeld modules. We can see that although there is no Mordell-Weil
rank for Drinfeld modules, they are still pretty nicely behaved.

Theorem 3.10.3 ([24], Theorem 1). Let L/F be a finite extension, and φ a Drinfeld
module φ : A→ L{τ}. Then under the action of φ, the field L is isomorphic to the direct
sum of its torsion submodule, and a free A-module of countably infinite rank. Further, the
torsion submodule of L is finite.
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Chapter 4

Number Theory

4.1 Lang-Trotter conditions

First, we must formulate a purely algebraic condition which will turn the question of
“Does a generate φ(FP )?” into two questions. First, “Does a generate ψ(FP ) as an End(φ)
module, where P splits completely in H := HO?” Second, “Is φ(FP ) cyclic?” It is easy to
see that these conditions are both necessary for a to generate φ(FP ), but in fact they are
sufficient as well.

Our next goal will be to follow the work of Gupta-Murty and Hsu-Yu, by formulating
the extensions Kq = H(φ[q]), and Ka

q = H(φ[q], q−1a). Then we see that a generates φ(FP )
if and only if P does not split completely in any extension Kq or Ka

q , as q varies over finite
primes of A, and q varies over finite primes of O = End(φ).

Let A be a Dedekind domain and let F be the fraction field of A. Let k be a field such
that [k : F ] <∞ and let O be the integral closure of A in k. If M is any (left)O-module,
then M has a natural A-module structure, by restricting the left-multiplication by O to
A. If S ⊂M , then let A · S be the smallest A-submodule of M which contains S, and let
O · S be the smallest O-submodule of M which contains S. Clearly A · S ⊂ O · S.

Our main interest is finite modules.

Definition 4.1.1. If I is an ideal of A and N is an A-module.

N [I] = {a ∈ N | x · a = 0, for every x ∈ I}.
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Similarly, define for I an ideal of O, and N ′ an O-module

N ′[I] = {b ∈ N ′ | x · b = 0, for every x ∈ I}.

Lemma 4.1.1. Let I be an ideal of A, with I = O · I. Then A · S[I] ⊂ O · S[I]

Proof. Without loss of generality, we assume that S = A · S[I]. We must show that O · S
is entirely I-torsion. Let b1, b2 ∈ O, s ∈ S and a ∈ I, then

(b1a)(b2s) = b1ab2s = b1b2(as) = b1b20 = 0

Therefore O · S is annihilated by b1a for any a ∈ I and b1 ∈ B. Hence O · S is annihilated
by I as required.

Lemma 4.1.2. Suppose M is a finite O-module, which is also a cyclic A-module. Let
a ∈M . Then A · a = M if and only if O · a = M .

Proof. If A · a = M then O · a ⊃ A · a ⊃ M . Suppose that O · a = M . Write a = c ·m,
where c ∈ A, and m is the element which generates M as an A-module. We can write
m = b · a for some b ∈ B. For x ∈ B, let Φx denote the multiplication by x map from M
to M . Since a = c ·m = c · b · a, we have that Φbc is the identity map on M . Hence, the
map Φc ∈ Aut(M), so Φn

c = 1, for some n. Hence, the map Φcn−1 is the inverse map of Φc

on M , that is cn−1a = m. Hence A · a = M .

Now, suppose we are in the situation that φ is a rank 2 Drinfeld module with CM by
a rank 1 Drinfeld module ψ : O → O′{τ} with leading coefficient of ψx always an element
of F∗r.

This is exactly the situation where we can apply Lemma 4.1.2.

Before we see this, we must go over what is happening for ψ as in [18].

Definition 4.1.2. An element x ∈ O is positive if η(x) = 1, where η(x) is the leading
coefficient of ψx.

Let P be a finite prime of H := HO. Then NH/k(P) is always a principal ideal in O
Theorem 3.9.5. There exists a positive element β = β(P) ∈ O with (β) = NH/k(P).
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Proposition 4.1.1 ([18], Proposition 2.1). We have

ψ(O/P) ∼= O/(β(P)− 1),

where the isomorphism is as O-modules.

Proof. Since ψ is rank 1, we know that ψ(O′/P) is cyclic. If we let p = P ∩ O, then we
know that the reduction of ψ at P has height one at p. Hence, by [14], the polynomial
ψp is completely inseparable mod P, so ψp ≡ xr

deg p
(mod P). Now β(P) = pdegP/ deg p, so

that
ψβ(P)(b) ≡ b (mod P),

for all b ∈ O′. This completes the proof since both sides have the same number of elements.

Proposition 4.1.2 ([18], Proposition 2.2). Suppose that a ∈ O′, P is a prime ideal in O′

and NH/L(P) = (β) for some positive element β ∈ O. Then a generates ψ(O′/P) if and
only if ψ(β−1)p−1(a) 6= 0 for all prime ideals p ⊆ O such that p divides (β − 1).

Proof. Follows from the above proposition.

Consider the set of a-torsion of ψ ψ[a], and the field Ka = H(ψ[a]). The extensions
Ka/H are unramified outside of a and∞, and are abelian. We have Gal(Ka/H) ∼= (O/a)∗.
Thus, there is no rational torsion as long as r 6= 2, which we have assumed to be the case.

Further the Artin symbol at a prime p of O not dividing a is given by

σp(λ) = ψp(λ) for all λ ∈ ψ[a].

Set Ka
a = KM(x), where x is a solution to ψa(x) = a.

Proposition 4.1.3 ([18], Proposition 2.3). Let p be a prime ideal in O, and let P be a
prime ideal in O′ with NH/k(P

′) = (β) for some positive β ∈ O. Then P splits completely
in Ka

p if and only if p | (β − 1) and ψ(β−1)p−1(a) = 0.

Proof. Suppose that P splits completely in Ka
p . The Artin symbol σ(β) is the identity in

Gal(H(ψ[p])/H). Thus,
σ(β)(λ) = ψβ(λ) = λ.

So, ψβ−1(λ) = 0 for all λ ∈ ψ[p]. Thus, the prime p divides the principal ideal (β − 1) in
O. Since P splits completely in Ka

p , there is a root α of ψp(x) ≡ a (mod P) in ψ(O′/P).
From the above proposition, we obtain that ψ(β−1)p−1(a) = ψ(β−1)(α) = 0 in ψ(O′/P′).
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Now, suppose that p divides (β − 1) and ψ(β−1)p−1(a) = 0. Let σP be the Artin symbol
in Gal(H(ψ[p])/H). Since NH/k(P) = (β), we know that σ(β) = σP. Since p | (β − 1), we
get that σP(λ) = σ(β)(λ) = ψβ−1(λ) + λ = λ, for all λ ∈ ψ[p]. That is, the prime P splits
completely in H(ψ[p]). To show that it splits completely in Ka

p , we need to find a solution
to the equation ψp(x) = a in O′/P. Let α be a root of the equation in a fixed algebraic
closure of O′/P. Then ψβ−1(α) = ψ(β−1)p−1(a) = 0.

Let q = P ∩ O. Then ψq(x) is Eisenstein at P. So, reducing modulo P gives that

ψq(x) ≡ xr
deg q

(mod P), for x ∈ O ′. Now, write (β) = ql where l is a positive integer

(l is the dimension of O′/P over O/q) Then ψβ(x) ≡ xr
deg β

(mod P). Thus, αr
deg p ≡ β

(mod P).

Since deg β = degP, we have that α ∈ O′/P, completing the proof.

Theorem 4.1.1 ([18], Theorem 2.4). The element a is a generator of ψ(O′/P) if and only
if the prime ideal P does not split completely in any of the fields Ka

P where P runs through
prime ideals in O.

Let P be a finite prime of F which lies over a prime ideal of A, say p∗, and assume that
p∗ splits completely in H. Let p be a prime of O′ lying above P . The index module at P ,
denoted i(P ), is used to keep track of whether or not the residue a generates the module
φ(FP ). It is defined by

i(P ) = φ(FP )/(A · {a}),

where A · {a} is the A-submodule of φ(FP ) generated by the reduction of a modulo P , (a).

Notice that φ(FP ) is generated by a if and only if i(P )[q] = {0} for every prime q of A.

Lemma 4.1.3. The A-module φ(FP ) is cyclic if and only if φ[q] ( φ(FP ) for every q 6= p∗.

Proof. Suppose φ(FP ) is cyclic, then it is isomorphic to A/m for some ideal m. Since φ is
rank 2, for every q except q = p∗, we have φ[q] ∼= (A/q)2. Sufficiency follows.

Now, write φ(FP ) ∼= A/m1 ⊕ A/m2 for m1 | m2. If q | m1 then φ[q] ⊂ φ(FP ), therefore
m1 = 1. The prime p∗ cannot divide m1 since either φ[p∗] = A/p∗ or φ[p∗] = 0. Necessity
follows.

Lemma 4.1.4. We have that φ(FP ) = A · {a} if and only if

1. φ[q] ( φ(FP ), for every prime q of A with q 6= p∗
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2. ψ(Fp) = O · {a}

Proof. Combining Lemma 4.1.2 and Lemma 4.1.3, we see that if A · {a} = φ(FP ) then
both conclusions hold. Conversely by Lemma 4.1.3, we know that φ(FP ) must be cyclic,
and so we can apply Lemma 4.1.2 to finish.

Just as in the case of the Lang-Trotter condition,

Lemma 4.1.5. Let q be a prime of A with q 6= p∗. Then φ[q] ⊂ φ(FP ) if and only if P
splits completely in the field K(φ[q]).

Proof. Let

f(X) =
∏

06=s∈φ[q]

(X − s) .

The polynomial f is separable with coefficients in K, since φb(X) is a separable polynomial
for b /∈ p∗, and 0 6= b ∈ q implies that f divides φb. So we see that F (φ[q]) is the splitting
field for f , and φ[q] ⊂ φ(FP ) if and only if f factors over FP . This is equivalent to the
condition of P splitting completely in F (φ[q]) from principles in number theory.

For q a prime of A, let Kq = H(φ[q]).

Lemma 4.1.6. Suppose that p∗ splits completely in the field H. Let q be a prime of A with
q 6= p∗, then φ[q] ⊂ φ(FP ) if and only if P splits completely in the field Kq.

Proof. By Lemma 4.1.5, we just have to show that P splits completely in K(φ[q]) if
and only if P splits completely in the field Kq, under the given conditions. If p∗ splits
completely in H then P splits completely in H. Also, we remark that Kq = H ∗K(φ[q]).
Thus, we have that P splits completely in Kq if and only if P splits completely in K(φ[q])
(see for example [8, Proposition 3.5.2]).

Proposition 4.1.4 (Modified Lang-Trotter). Let P, p, p∗, a be as above. Then A·a = φ(FP )
if and only if P does not split completely in any field Ka

q or Kq, for q,q prime ideals that
do not divide p∗.

Just as in the CM-case for elliptic curves, we need only consider Ka
a such that a is only

divisible by primes of first degree. Let q be a prime ideal of O. Set q = q
⋂
A. We say q

is of first-degree if [O/q : A/q] = 1.

Then for a square-free ideal s of A, let Ks =
∏

q|sKq. Similarly, for a a square-free

ideal of O which is a product of first-degree primes of O, define Ka
a =

∏
q|aK

a
q . Then set
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Ka
a,s = Ka

a ·Ks. Then if P is a prime for which p∗ splits completely in H, FP = A · {a} if
and only if P does not split completely in any Ka

a,s.

Now, assume that A = Fr[T ], and F = Fr(T ). In this situation a prime of A will simply
mean a monic irreducible polynomial. Let φ : A→ F{τ} be a Drinfeld module of generic
characteristic such that End(φ) = A. Let a1, . . . , at ∈ F generate a free A-submodule of
F , by Poonen’s theorem [24, Theorem 1], we can take t as large as we want. Let Γ be the
A-submodule generated by a1, . . . , at. Let ΓP be the reduction of Γ modulo P for primes
P such that φ has good reduction at P and vP (Pi) ≥ 0 for each i.

We want to describe completely the situation that φ(FP )/ΓP [q] 6= 0. First of all, this
condition implies that φ(FP [q]) ∼= A/q or (A/q)2. Secondly, there must exist α1, . . . , αt ∈
FP with φq(αi) = ai.

Then we know that φ(FP )/ΓP [q] 6= 0 if and only if φ(FP )[q] 6= 0 and there exists αi ∈ FP
such that φq(αi) = ai.

This leads us to define
KΓ
q = k(φ[q], α1, . . . , αt)

where αi is a root of φq(X) = Pi.

Let Gq = Gal(KΓ
q /F ).

Proposition 4.1.5. The Galois group Gq is isomorphic to a subset of GL2(Fq) o φ[q]t.
Let σP ∈ Gq be the Frobenius corresponding to P , and write σP = (γP , ξP ). Then

φ(FP )/ΓP [q] 6= 0,

if and only if either

1. γP = idφ[q] and 〈(ξa1), . . . , (ξat)〉 generates a cyclic or trivial submodule of φ[q], or

2. ker(γP − 1) ∼= A/q and (ξai) ∈ Im(γP − 1).

Denote the resulting conjugacy class by Cq ⊂ Gq.

Let s be a square-free monic polynomial in A, and let KΓ
s =

∏
q|sK

Γ
q , Gs = Gal(KΓ

s /k),

and Cs be the conjugacy class in Gs determined by all Cq for q | s.

Then ΓP = φ(FP ) if and only if σP ∈ Gs does not lie in Cs for any square-free s.
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4.2 Basic discriminant overview

We will work from the following references:[8], [31].

We recall the machinery of the different, for more details see [8, Chapter 3, Section 6].
Let (L, v) and (L′, w) be two complete fields with discrete valuations v, w such that L′ is
a finite separable extension of L. Set

OL′ = {x ∈ L′ | w(x) ≥ 0}
RL′ = {x ∈ L′ | w(x) > 0}

and let βL′ be a generating element for the principal ideal RL′ . The complementary module
O′L′/L of OL′ over L is defined by

O′L′/L = {x ∈ L′ | traceL′/L(xOL′) ⊂ OL},

where trace takes fractional ideals of L′ to fractional ideals of L.

The complementary module O′L′/L contains OL′ and is a fractional ideal of OL′ , so

O′L′/L = β
−dL′/L
L′ OL′ for some non-negative exponent dL′/L, called the different exponent.

Note that dL′/L > 0 if and only if L′/L is a ramified extension.

If we know that traceL′/L(β−mL′ OL′) ( OL for some non-negative integer m, then dL′/L ≤
m. Likewise, if traceL′/L(β−mL′ OL′) ⊂ OL, then dL′/L ≥ m.

For our purposes, consider L′/L a finite, separable extension of global function fields.
Let P be a prime of L′, lying over a prime P of L. Set (L̂′, vP), (L̂, vP ) to be the completions

of L,K at P and P , respectively. Let dL′/L(P) be the different exponent of L̂/K̂.

The different of the extension L′/L is a divisor of L′, denoted Diff(L′/L), defined by

Diff(L′/L) =
∑
P

dL′/L(P) ·P.

The degree of the different appears in the Riemann-Hurwitz formula [27, Theorem 7.16]
to determine the genus of L′ in terms of the genus of L. The genera of L′ and L both
appear in an effective Chebotarev density theorem for L′/L. Thus, we must compute the
different of various fields. More specifically for fields L′ over some fixed field L, we must
determine a bound for deg Diff(L′/L)/[L′ : L].

The different is additive over towers of extensions. That is, let L ⊂ M ⊂ N be a
tower of function fields. Then Diff(N/L) = Diff(N/M) + Diff(M/L) where the second
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summand is the appropriate divisor of N . Now, the degree of Diff(M/L) as a divisor of
N is not necessarily the same as the degree of Diff(M/L) as a divisor of M . Assume
that the constant fields of N,M,L are all equal to Fr. Then degN Diff(M/L) = [N :
M ] degM Diff(N/M), so that

deg Diff(M/L)

[N : L]
=

deg Diff(N/M)

[N : M ]
+

deg Diff(M/L)

[M : L]
.

The different exponent of tamely ramified primes are also very predictable. That is if
P is a prime of L′, with ramification degree eP coprime to p, the characteristic of N , then
dL′/L(P) = eP − 1. If P is wildly ramified, then we have dL′/L(P) ≥ eP − 1.

4.3 All discriminant results

We begin with the results of Gardeyn[9].

To find out the (possibly wild) ramification over various primes, we must complete at
the primes in question, then use Drinfeld’s analytization results.

This section is from [9, Propositions 4 and 6]. Here we set A = Fr[T ], F = Fr(T ) and
K to be a finite extension of F . The map φ : A→ K{τ} is a Drinfeld module of rank d.

For a place v of K, let Kv be the completion of K at v and Ov the ring of integers of
Kv with residue field Fv. Let GK = Gal(Ksep/K), Gv = Gal(Ksep

v s/Kv) ⊂ GF and Iv be
the inertia group at v. Let Cv be the completion of the algebraic closure of Kv, with v
extended in the usual way. The place v is called infinite if it lies over ∞.

Theorem 4.3.1 ([10], Theorem 4.6.9). For an infinite place v of K, there exists an entire
Cv-homomorphism eφv : Cv → Cv defined over Kv such that

eφv (ax) = φa(e
φ
v (x))

for all a ∈ A and x ∈ Cv. The kernel of eφv ,Λv, is an A-lattice which is Gv-invariant in Cv
of rank d.

Theorem 4.3.2 ([6], Proposition 7.2). Let P be a prime of K such that the reduction of φ
mod P is rank d. Then there exists an entire homomorphism eφP : CP → CP and a Drinfeld
module ψ of rank d which has good reduction at P such that

eφP (ψa(x)) = φa(e
φ
P (x)).
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Let ΛP = ker(eφP )(CP ). Then ΛP is a GP -invariant A-lattice of rank d− d.

Also, recall the following:

vP (ψa(λ)) = |a|d∞vP (λ),

and vP (λ) < 0 for all λ 6= 0, λ ∈ ΛP , where |a|∞ = (#Fv)
−v∞(a).

Let us therefore define a norm on Λv such that

‖a · λ‖v = |a|∞‖λ‖v.

For v a finite place, choose ‖·‖v = (−v(·))1/d and for v an infinite place, choose the
unique extension to C∞ of | · |∞.

Let n be the rank of Λv and KΛ
v be the field extension of Kv by Λv.

Let
Bκ = {λ ∈ Λv : ‖λ‖ ≤ κ},

for κ ∈ R. Notice that Bκ is a finite set. Let vi be the minimum κ such that Bκ contains
i elements linearly independent over k. Notice that v1 ≤ v2 ≤ · · · ≤ vn.

We say that a basis {λ1, . . . , λn} is minimal if ‖λi‖ = vi for each i. We have the
following equality for (ai) ∈ An:∥∥∥∥∥

n∑
i=1

ai · λi

∥∥∥∥∥
v

= max1≤i≤n{‖ai · λi‖v}.

Following [34], suppose that we have a strict inequality above.

Then there exists s > 1 such that

‖ai1λi1‖ = · · · = ‖aisλis‖ =

∥∥∥∥∥
n∑
i=1

ai · λi

∥∥∥∥∥
v

.

Then ∥∥∥∥∥
s∑
j=1

aijλij

∥∥∥∥∥ < ‖aisλis‖
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which follows since we may remove any aiλi from the sum if ‖aiλi‖ < ‖aisλis‖. But now,∥∥∥∥∥
s∑
j=1

aij
ais
λij

∥∥∥∥∥ < vis .

By choosing a minimal basis, deg aij ≥ deg ais for all j, so that for 1 ≤ j < s − 1 we can
write aij/ais = bj + cj where bj ∈ A and |cj| < 1. Thus,∥∥∥∥∥

s−1∑
j=1

bjλij + λis

∥∥∥∥∥ < vis ,

hence our assumption that s > 1 is false. Hence there is a unique subscript for which
‖aiλi‖ is maximal, and the equality follows from the ultrametric property.

Proposition 4.3.1 ([9], Proposition 4). 1. The degree of the field extension KΛ
v /Kv is

bounded by gv, which we define to be

gv := # GLn(Fr)
n∏
i=1

i∏
u=1

vi
vu

2. The different D(KΛ
v /Kv) is bounded by: ordv(D(Kv(Λ)/Kv)) ≤ 1 +DΛ

v , defined by

DΛ
v := 2

n∑
i=1

(
ri−1v

(
λ1

λi

) i∏
u=1

vi
vu

)
.

Proof of 1. Set GΛ := Gal(KΛ
v /Kv). Since Λv is a discrete subset of Cv, the orbit under Gv

of any basis of Λv is a finite set. Hence Gv = [KΛ
v : Kv] is finite. We obtain a representation

of Gv by letting it act on Λv:

ρΛ : Gv → AutA(Λv) ∼= GLn(A).

Fix a minimal basis (λi) for Λv. Let v1 < v2 < · · · < vs be the distinct values of
v1, . . . , vn. Suppose that v1 appears with multiplicity m1, v2 with multiplicity m2 and so
on. For i ≤ n, let j(i) be the unique index such that vj(i) = vi. Also, for each σ ∈ GΛ and
1 ≤ i ≤ n write

σ(λi) =
∑

1≤u≤n

σi,uλu,
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with (σi,u)u ∈ An. By the properties of minimal bases,

vi = ‖σ(λi)‖ = max1≤u≤n{|σi,u|vu}.

This implies that σi,u = 0 if j(u) > j(i) and σi,u ∈ Fr if j(i) = j(u). Let

Λj = ⊕ni=1
j(i)≤j

A · λi and Λj = Λj/Λj−1

are Gv-invariant. Further, the image of the representation

ρj : Gv → AutA(Λj),

is isomorphic to a subgroup of GLmj(Fr).
Let HΛ be a p-Sylow subgroup of GΛ (where r is a power of p), and let K1

v be the
sub-field of KΛ

v fixed by HΛ. We can see that the maximal divisor which is prime to p of
the order of a finite index subgroup of # GLn(A) is

∏n
i=1(qi − 1). Thus,

[K1
v : Kv] ≤

n∏
i=1

(qi − 1)

Now let us construct a minimal basis which behaves very nicely with respect to our
representations ρj when restricted to HΛ. Since HΛ is a p-group and ρj(HΛ) ⊂ GLmj(Fr),
we know that ρj(HΛ) is a unipotent subgroup. Therefore, there exists change of basis
matrices γj ∈ GLmj(Fr) for which ρj(HΛ) is upper-triangular. Now set

(λ′1, . . . , λ
′
n) = (λ1, . . . , λn) · (γ1 ⊕ · · · ⊕ γs),

which is a new minimal basis.

For each 1 ≤ i ≤ n set
Ki
v = K1

v (λ′1, . . . , λ
′
i),

and notice that λ′1 ∈ K1
v (since it is fixed by HΛ). Hence, the ramification degree of λ′1

must be coprime to p. This means that the ramification degree of λ1 must also be coprime
to p (they have the same valuation) and hence λ1 ∈ K1

v .

Now, we have a tower of Galois extensions

K1
v ⊂ K2

v ⊂ · · · ⊂ Kn
v = KΛ

v

such that Gal(Kn
v /K

1
v ) = HΛ. For each i > 1 and σ ∈ Gal(Ki

v/K
i−1
v ) we can write
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σ(λ′i) =
∑

1<u≤i σi,u · λ′u with σi,u ∈ A. Further, we have that σi,u = 0 if u > i and σi,i = 1.
Thus, we have |σi,u| ≤ vi

vu
for u < i.

The number of choices for σi,u is at most r · vi/vu. Thus

[Ki
v : Ki−1

v ] ≤ ri−1

i∏
u=1

vi/vu.

Combining this with the bound for [K1
v : Kv] and the size of # GLn(Fr) gives the required

bound.

Proof of 2. Let Lv := Knr
v be the maximal unramified extension of Kv in Ksep

v . Set Liv =
LvK

i
v with ring of integers U i

v. Set I i = Gal(Liv/L
i−1
v ). Finally, set LΛ

v = KΛ
v Lv. By [31], we

have D(LΛ
v /Lv) = D(KΛ

v /Kv). Further, since L1
v/Lv is tamely ramified ordv(D(L1

v/Lv)) <
1.

For i ≥ 2, let πi = λ′1/λ
′
i ∈ U i

v. Since U i−1
v [πi] is an order in U i

v, we have

D(Liv/L
i−1
v ) |

∏
16=σ∈Ii

(σ(πi)− πi).

Notice that ‖λ′1‖ ≤ ‖σ(λ′i) − λ′i‖ for σ ∈ I i \ {1}, by definition of a minimal basis. In
other words, v(λ′1) ≥ v(σ(λ′i)− λ′i). Thus,

v(σ(πi)− πi) ≤ 2v(πi) = 2(v(λ′1)− v(λ′i)) = 2(v(λ1)− v(λi)).

So we get

ordvD(Liv/L
i−1
v ) ≤

∑
1 6=σ∈Ii

v(σ(πi)− πi) ≤ 2#I iv(λ1/λi).

From the proof of 1, we know that #I i ≤ ri−1
∏i

u=1 vi/vu. Thus,

ordv(D(Liv/L
i−1
v )) ≤ 2ri−1v(λ1/λi)

i∏
u=1

vi/vu.
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Since, by [31, Chapter III, Section 4, Proposition 8] we know that

D(LΛ
v /Lv) =

n∏
i=1

D(Liv/L
i−1
v ),

the result follows.

Definition 4.3.1. For φ a rank d Drinfeld module over A define a divisor ∆φ of K as
follows.

1. If v lies above ∞ then set ordv(∆φ) = 1 +DΛ
v where Λ is the kernel of eφv as defined

previously.

2. If v is a finite place of F such that φ has good reduction, set ordv(∆φ) = 0. If φ has
potential good reduction over an tamely ramified extension of K, set ordv(∆φ) = 1.

3. If v is finite and φ has stable reduction over a tamely ramified extension K ′v/Kv: let
Λv be the A-lattice of rank d − d associated to eφv with minimal basis (λ1, . . . , λd−d),
set

ordv(∆φ) = 1 +DΛ
p + 2

d−d∑
j=1

(−v(λj)).

Denote by [a] the divisor of K corresponding to the finite part of the divisor (a).

Proposition 4.3.2 ([9], Proposition 6). Let a be a non-constant element of A. Then

D(K(φ[a]), K) ≤ r[a] + ∆φ

as divisors of K(φ[a]).

Proof. We split the proof according to the three cases of the above definition.

For v an infinite place, we see that

φ[a] = eφv (a−1Λv),

thus Kv(φ[q]) ⊂ KΛ
v . Thus, this part follows from the previous proposition and the defini-

tion of ∆φ.

For v a finite place of good reduction, let 0 6= s ∈ φ[a]. The minimal polynomial of s,
denoted by fs, divides φa and so

v(∂fs(s)) ≤ vp(∂φa) = ordv(a).
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Thus, we have that ordv(D(K(s)/K)) ≤ v(∂fs(s)) = ordv(a). Since we need to adjoin
d such roots, linearly independent over A, we obtain

ordvD(K(φ[a])/K) ≤ r ordv(a).

If φ has potential good reduction at v′ over F ′v/Fv, then the argument above gives us
that

ordv(D(K ′v(φ[a])/K ′v)) ≤ r ordp(a),

and [31, Chapter III, Section 6, Proposition 13] gives us that ordp(D(K ′v/Kv)) < 1. Com-
bining gives the result in this case.

Finally, suppose that v is a finite place of potential stable reduction, over K ′v. Then
the corresponding rank d Drinfeld module ψ has good reduction over K ′v. Set

K0
v = K ′v(Λv, ψ[a]),

and so ordp(D(K0
v/Kv)) ≤ r ordv(a) + 1 +DΛ

v .

Fix a minimal basis λ1, . . . , λd−d for Λv. For each 1 ≤ j ≤ d − d, choose a root sj of
the equation ψa(X) = λj. Each conjugate σ(sj) over K0

v lies in the set sj + ψ[a]. Thus
K0
v (sj)/K

0
v is Galois and let the inertia group be Ij = Gal(Lv(sj)/Lv), where Lv is the

maximal unramified extension of K0
v . Set Uv (resp. U i

v) to be the ring of integers of Lv
(resp. Liv).

Since σ(sj)− sj ∈ ψ[a], we have∏
16=σ∈Ij

(σ(sj)− sj) | ∂ψa

and so ∑
16=σ∈Ij

v(σ(sj)− sj) ≤ ordv(a).

Since v(sj) + q−d deg av(λj) < 0, we have that πj = s−1
j ∈ U j

v and #Ij ≤ rd deg a. Since
Up[πj] is a rank [Lp(sj) : Lp] Uv module, we obtain

ordp(D(K0
v (sj)/K

0
v )) = ordv(D(Lv(sj)/Lv)) ≤

∑
1 6=σ∈Ij

v(σ(πj)− πj).
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But, we know that v(σ(πj)− πj) ≤ v(σ(sj)− sj)− 2v(sj), so∑
16=σ∈Ij

v(σ(πj)− πj) ≤ ordv a− 2#Ijv(sj) ≤ ordv(a)2v(λj).

Noticing that K0
v (ψ−1

a (Λv)) is obtained by adjoining s1, . . . , sd−d and φ[a] = eφv (ψ−1
a (Λv))

we obtain
ordv(D(Kv(φ[a]))/K0

v ) ≤ (d− d) ordv(a)− 2
∑
j

v(λj),

which proves the proposition by [31, Chapter III, Section 6, Proposition 13].

This completes our review of the main result of Gardeyn in [9]. We must continue along
these lines if we want to determine the different of KΓ

s . From now on, we only consider
K = F = Fr(T ). The different of KΓ

s /K will be denoted D(s,Γ) := D(KΓ
s /K).

We again need to separate the classes of valuations of KΓ
s = K(s−1Γ, φ[s]). Let us

briefly consider the possibilities.

Lemma 4.3.1. Let P be a non-torsion point and v any place of K. Let Y0 be a particular
solution to eφv (X) = P . Then there exists a constant N0, depending on φ, P , such that if v
lies over ∞

ordvD(Kv(Λv, Y0)/Kv(Λv)) ≤ N0

and if v is a finite place of bad reduction, then

ordvD(Kv(Λv, Y0, φ[a])/Kv(Λv, φ[a])) ≤ N0.

Proof. In both cases, we examine the Newton polygon of the function eφv (X) − P . The
function eφv is entire, thus so is the function eφv − P . By considering the different of each
of the finitely many extensions considered above, each of which is finite, we get an upper
bound for the different as required. An exact bound depends upon P and the coefficients
of eφv .

If v lies above ∞, then we will proceed similar to [18].

Definition 4.3.2. We will define a divisor of K, denoted ∆α,φ in the following way, by
defining ordv(∆Γ,φ) depending on v and Γ, where Γ is freely generated over A by t elements.

1. v is a place of K which lies above ∞. Let ordv(∆Γ,φ) = t ·N0
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2. v is a place of K for which v(Γ) ≥ 0 and φ has good reduction at v. Then set
ordv(∆Γ,φ) = 0.

3. v is a place of K for which either v(α) < 0 for some α ∈ Γ or φ has potential good
reduction at v. Then set ordv(∆Γ,φ) = 1.

4. v is a place of KΓ
s where φ has bad reduction, then set ordv(∆Γ,φ) = t ·N0 + 1.

Theorem 4.3.3. The different of KΓ
s over K, denoted by D(s,Γ) satisfies

D(s,Γ) ≤ ∆φ + ∆φ,Γ + d · [s] + t · [s].

Thus the degree of the above divisor, denoted by d(s,Γ) satisfies

d(s,Γ)/n(s,Γ)� (t+ d) · deg s,

where n(s,Γ) = [KΓ
s : K].

Proof. By [31, Chapter III, Section 4, Proposition 8], the first part follows by the work of
Gardeyn as well as the definition of ∆Γ,φ. The second part follows by taking degrees and
noticing that the only part on the right hand side that depends on s is (t+ d)[s].

Now, let us review the case in which φ has rank 2 with complex multiplication by ψ.
We want to determine the different of the fields Ka

a,s over H. We will give an overview of
different results contained in [18], as well as slight adaptations needed for our case. This
includes (sometimes wild) ramification at finite primes as well as at the infinite primes.

4.4 Kummer theory of Hsu and Yu

In this section a ∈ K ∩ O′ is a fixed non-torsion element. We examine the Kummer
extensions related to qth roots of a.

Lemma 4.4.1 ([18], Theorem 2.6, part (1)). Let a, b be ideals of O with a square free and a |
b. Then Gal(H(ψ[b], a−1a)/H(ψ[b])) is an O-submodule of Gal(H(ψ[a], a−1a)/H(ψ[a])).

Proof. As in [18], the group Gal(H(ψ[b])/H) acts on Gal(H(ψ[b], a−1a)/H(ψ[b])) by con-
jugation. We want to extend the action of

Gal(H(ψ[b])/H) ∼= (O/b)×
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to turn
Gal(H(ψ[b], a−1a)/H(ψ[b]))

into an O-module. This is a consequence of an approximation lemma in [31].

Lemma 4.4.2 ([18], Theorem 2.6, part (1)). Let q be a prime ideal of O of first degree.
Let b be an ideal of O with q dividing b. Then

[H(ψ[b], p−1a) : H(ψ[b])] = [H(ψ[p], p−1a) : H(ψ[p])]

Proof. If H(ψ[p], p−1a) = H(ψ[p]), then the lemma follows. Therefore, assume that

Gal(H(ψ[p], p−1a)/H(ψ[p])) ∼= O/p.

By Lemma 4.4.1, we know that Gal(H(ψ[b, p−1a)/H(ψ[b])) is either the trivial O-module,
or isomorphic to O/p. But if the Galois group is trivial then p−1a ∈ H(ψ[b]). Therefore, the
non-abelian extension H(ψ[p], p−1a)/H is contained in the abelian extension H(ψ[b])/H.
Therefore, we must have that p−1a /∈ H(ψ[b]).

Lemma 4.4.3 ([18], Theorem 2.6, part (3)). Let a be a square free ideal of O only divisible
by primes of first degree, and b be an ideal of O such that a divides b. Then

[H(ψ[b], a−1a) : H(ψ[b])] = [H(ψ[a], a−1a) : H(ψ[a])]

Proof. We know that
M := Gal(H(ψ[b], a−1a)/H(ψ[b]))

is a submodule of
N := Gal(Ka/H(ψ[a])).

Let p be a prime of O such that p | a. We can consider the projections Mp (resp. Np)
of M (resp. N) onto the p-primary part. Clearly, we have that Mp ⊂ Np. We need to
eliminate the possibility that {0} = Mp 6= Np. Consulting [18, Theorem 2.6(3)], we see that
this implies that p−1a ∈ H(ψ[b]) but p−1a /∈ H(ψ[a]). This implies that the non-abelian
extension Ka

a /H is contained in the abelian extension H(ψ[b])/H, which is a contradiction.
So Np

∼= Mp for each p | a and hence M = N .

Lemma 4.4.4. For a an ideal of O only divisible by primes of first degree and s an
ideal of A, we have n(a, s) = n(a)m(s)

ϕ((a,s))
, where (a, s) denotes the gcd ideal of a and s and

ϕ(m) = #(O/m)×.
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Proof. Set n1 = [Ka : H] and n2 = [Ks : H]. Set b = lcm(a, s) and b′ = gcd(a, s) then we
see that

Ka
a,s = H(ψ[b], a−1a),

and by Lemma 4.4.3, we have

[Ka
a,s : H(ψ[b])] = [Ka

a : H(ψ[a])]

Furthermore,

n(a, s) = [Ka
a : H(ψ[a])] · [H(ψ[b]) : H]

= [Ka
a : H(ψ[a])] · [H(ψ[a]) : H] · [H(φ[s]) : H]/[H(ψ[b′]) : H]

= [Ka
a : H] · [Ks : H]/ϕ(b′)

= n1 · n2/ϕ(b′)

The goal of this section is to bound the degree of the different of Ka
a,s/H.

Let p′ be a finite prime of Ka
a,s. Let m be the least common multiple ideal of a and s.

Proposition 4.4.1. The different exponent dKa
a,s/H(p′) ≤ 2ep′(K

a
a,s/H), as long as p′ does

not lie above a prime of A which ramifies in O. If p′ does lie above a prime of A which
ramifies in O, then dKa

a,s/H(p′) ≤ 4ep′(K
a
a,s/H)2.

Proof. Let p′′ be a prime of H(ψ[m]) which sits below p′, such that the ramification index
of p′ over p′′ is e. Let d(p′′) denote dH(ψ[m])/H(p′′), and d(p′) denote dKa

a,s/H(ψ[m]). The
additivity of the different over towers is equivalent to the fact

dKa
a,s/H(p′) = ed(p′′) + d(p′).

By the principal ideal theorem [14], or Theorem 3.9.5, we have that the τ 0 term of
ψa, say u, generates aO′ in O′. Note that ψa is monic with all coefficients in O′. Let λ be
such that ψa(λ) = a. Then H(ψ[m], λ) = Ka

a,s. Therefore,

d(p′) ≤ vp′(∂(ψa))(λ)

= vp′(u)

= vp′(a).
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Now, let P be the prime of A which sits below p′′. Suppose that P does not ramify
in O, so that H(ψ[P ])/H is tamely ramified at P . Further, the prime P is unramified
in H(ψ[M ])/H, if M is coprime to P . Therefore, the prime p′′ is tamely ramified in
H(ψ[m])/H. Hence, we have that d(p′) = ep′′(H(ψ[m])/H) − 1. Ramification degrees are
multiplicative in towers, so that

dKa
a,s/H(p′) ≤ ep′(K

a
a,s) + vp′(a).

Further, the extension H/k is unramified. Using this fact, we can see that vp′(m) =
ep′(K

a
a,s/H), which gives the first statement of the proposition.

Suppose that P does ramify in O. We know that e ≤ dKa
a,s/H(ψ[m])(p

′) + 1. In this case,

dKa
a,s/H(p′) ≤ vp′(m)2 + 2vp′(m).

Now, remember that ∆ is the product of all primes of A which ramify in O. If m is the
lcm of a and s, then vp′(m) ≤ vp′(∆) if p′ | ∆. So, we have vp′(m) ≤ 2ep′(K

a
a,s/H), which

gives the second part of the proposition.

We notice that Ka
a,s/H is unramified at any prime not dividing ∞ or m.

Proposition 4.4.2. Let ∞′ be a prime of Ka
a,s which lies above ∞. Then dKa

a,s/H(∞′) is
bounded by a constant independent of a and s.

Let k∞ be the completion of k at ∞. Let Ω be a fixed algebraic closure of k∞.

A rank 1 O-lattice is a discrete O-submodule Λ ⊂ Ω such that kΓ is a 1 dimensional
vector space over k. Given such a Λ ⊂ Ω there exists an ideal D ⊂ O and a non-zero
element ξ ∈ Ω such that Λ = Dξ.

We define the exponential function associated to Λ by

eΛ(z) = z
∏

06=r∈Λ

(
1− z

r

)
,

for z ∈ Ω. The function eΛ(z) : Ω → Ω is entire, onto and Fr-linear. It is periodic with
group of periods Λ.

By [10, Theorem 7.2.15], such lattices are in correspondence with rank 1 sgn normalized
Drinfeld modules defined over H. That is given such a Drinfeld module ψ, there exists a
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lattice Λ for which
ψb(eΛ(z)) = eΛ(bz),

for all b ∈ O and

eΛ(z) =
∞∑
i=1

aiz
qi ,

with ai ∈ H.

Let π be a uniformizing element for k∞, so that ord∞(π) = 1. Extend ord∞ to Ω in the
usual way.

Proposition 4.4.3 ([18], Proposition 3.2). Let a be a non-zero ideal in O. Then

1. There exists a constant C0 (may be negative) which depends only on k and on the
sgn-normalized Drinfeld module ψ such that ord∞(λ) ≥ C0, for any 0 6= λ ∈ ψ[a].

2. We have
ord∞(λ) = O(deg a)

for any 0 6= λ ∈ ψ[a], where the implied constant depends only on k and ψ.

3. There exists a constant C1 (may be negative), which depends only on ψ and a such
that if α is any root of ψa(x)− a = 0, then

ord∞(α) ≥ C1.

4. Suppose that ∞1 is any prime divisor of H(ψ[a]) sitting over ∞. Then the ramifi-
cation index e∞1(K

a
a /L) = O(1), where the implied constant only depends on ψ and

a.

Proof. Let h = [H : k] be the class number of O. Then write ah = (β) for some positive
element β. We will show ord∞(λ) ≥ C0 for 0 6= λ ∈ ψ[p].

Find the lattice Λ and ideal D and element ξ ∈ Ω with Γ = Dξ and eΓ satisfies
the functional equation corresponding to ψ. Given λ ∈ ψ[β], there exists d ∈ D with
λ = eΛ(dξ/β). By the Riemann-Roch theorem, Theorem 3.1.1, we can always find an
element d′ ∈ D such that d′ ≡ d (mod βD) and ord∞(d′) ≥ ord∞(β) − degD − 2g + 1,
3.1.1.

This implies that ζ = d′ξ/β ∈ Ω is such that λ = eΛ(ζ) and ord∞(ζ) ≥ C1. Applying
the exponential function to ζ, we obtain ord∞(λ) ≥ C0.
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This follows since eΛ is an entire function so ord∞(λ) is bounded by the first n terms
of eΛ(ζ) for some n, and the existence of C0 follows.

For an upper bound, we have

λ =
d′ξ

β

∏
0 6=c∈D

(
1− d′ξ/β

cξ

)
=
d′ξ

β

∏
06=c∈D

(
1− d′

βc

)
.

Since ord∞(β) = −h deg a, and ord∞(d′) ≤ 0, we have

ord∞(λ) ≤ O(deg a) + ord∞

 ∏
06=c∈D

ord∞(d′/(βc))=0

(
1− d′

βc

) .

There are only finitely many choices of 0 6= c ∈ D with ord∞(d′/(βc)) = 0 because
ord∞(c) = ord∞(d′) − ord∞(β) ≥ C2. Moreover, the number of these c is bounded by a
constant depending only on D. To be sure, the number of such c is bounded by

#{c ∈ D | ord∞(c) ≥ − degD− 2g + 1}

which is a finite number only depending on D.

For each such c, we have

ord∞

(
1− d′

βc

)
≤ ord∞

(
1

βc

)
≤ O(deg a).

Let us now assume that ord∞(α) < ord∞(λ) for λ ∈ ψ[a]. Since

ψa(x) = x
∏

06=λ∈ψ[a]

(x− λ)

we have
ord∞(a) = ord∞(α) +

∑
06=λ∈ψ[a]

ord∞(α− λ).

Now,
ord∞(α− λ) = ord∞(α),
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for all λ ∈ ψ[a]. Thus,
ord∞(α) = ord∞(a)/qdeg a

Now, let us construct a finite extension of k∞ which will contain Ka
a as a runs through

all ideals of O.

This will imply our last statement of the theorem. We will also use this fact later.

Let b ∈ O be a fixed positive element with deg(b) ≥ 1, and let α be a root of ψb(x) = a.
Since eΛ is surjective, let η ∈ Ω be such that eΛ(η) = α. Then

ψβbeΛ(η/β) = ψb(α) = a,

and so,
ψa(ψβb/a(eΛ(η/β))) = a.

Now, ψβb/a(eΛ(η/β)) is in the finite extension k∞(η)/k∞. Hence, all roots of the equa-
tion ψa(x) = a lie in the extension k∞(η, ξ)/k∞. Hence e∞1(K

a
a /k) is bounded by the

ramification index of k∞(η, ξ)/k∞ which is independent of a.

Lemma 4.4.5. Let H∞ be the completion of H at ∞. There exists a finite extension H∗

of H∞ such that Ka
a,s ⊂ H∗ for all a, s.

Proof. Consider the field H∞(η, ξ) from the proof of [18, Proposition 3.2, part (4)]. It is
then clear that H∞(η, ξ) contains fields of the form KM. By setting M = as, we see that
H∞(η, ξ) contains the required fields.

Proposition 4.4.4. We have the bound

deg Diff(Ka
a,s/H)

n(a, s)
� deg a + deg s.

Proof. Let P be a prime of H and write P =
∏

(peii ), a product of primes of Ka
a,s, and

further such that
∑

i fiei = n(a, s) and fi = [Fpi : FP].

Now, since the constant fields of Ka
a,s and H are equal, we may write

deg pi = fi degP.

Again, we may reduce the complexity of our problem by noticing that Ka
a,s/H is a

Galois extension, and so fi,ei do not depend on i, and we write

n(a, s) = gPfPeP,
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for each prime P of H.

Therefore

deg Diff(Ka
a,s/H)

n(a, s)
=

∑
P-∞∆

∑
p|P

dKa
a,s/H(p) deg p

n(a, s)

+
∑
P|∆

∑
p|P

dKa
a,s/H(p) deg p

n(a, s)

+
∑
P|∞

∑
p|P

dKa
a,s/H(p) deg p

n(a, s)

= S1 + S∆ + S∞

Now,

S1 =
∑

P|as,P-∆

gPfP2eP degP

gPfPeP

�
∑
P|as

degP

=
∑
P |as

fPgP degP

� deg a + deg s.

The other terms are all bounded by a constant depending only on a, φ. To see this,

S∆ ≤
∑
P|∆

∑
p|P

4e2
PfP degP

ePfPgP

which is bounded by the degree of the different of the field Ka
∆′,∆ where ∆ = ∆′2 as ideals

of O. This is because the extension Ka
a,s ·Ka

∆′,∆/K
a
∆′,∆ is unramified at primes dividing ∆′

or ∆ by [14].

Finally,

S∞ ≤
∑
P|∞

CgPfP degP

ePfPgP
�
∑
P|∞

degP = O(1)
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4.5 Kummer theory of Ribet and Bashmakov

We give a summary of the introduction to [26], which gives an overview of “Bashmakov’s
method” for showing that Gal(Mq/k(E[q])) are isomorphic to E[q]s for q large enough. To
put things in context, we assume that V is an abelian variety defined over some number
field k, Vn is the group of n-torsion, and P1, . . . , Ps are points of V defined over k. We
want to determine Gal(k(Vn, 1/nP1, . . . , 1/nPs)/k(Vn)) ⊂ V s

n . The goal is to see that this
group is equal to V s

n for n coprime to some number M . Set G to be the absolute Galois
group of k, then we have a representation ρ : G → Aut(Vn), let Hn be its kernel and Gn

be its image. Set O to be the ring of k endomorphisms of V .

Now, we have four axioms which form the framework for Bashmakov’s method.

1. For almost all l, O/lO is equal to the commutant of Gl in End(Vl).

2. Vl is a semisimple Gl module, for almost all l.

3. For almost all l, the cohomology group H1(Gl, Vl) vanishes.

4. For each finitely generated subgroup Γ of V (k), the division group

Γ′ = {Q ∈ V (k) | lQ ∈ Γ},

is such that Γ′/Γ has finite exponent.

The usual consequence of these four axioms is that Gal(k(l−1P1, . . . , l
−1Pn, Vl)/k(Vl))

should be as large as possible for l large enough. The statement of theorems of this type
depends on the structure of V . Two examples that work are:

1. V is an elliptic curve with or without CM.

2. V is an abelian variety of CM type.

Now, let us show how we hope to establish analogous facts for Drinfeld modules. The
fourth condition will follow from [24, Theorem 1]. The third condition can be established
by following Ribet’s work, or Bashmakov’s work,[25],[26],[3]. The first two axioms can be
proved as in [25],[3], where we basically use the theorem of Pink and Rutsche [23, Theorem
0.1] as the analogue to the theorem of Serre [30]. We carry out this basic plan in the next
section. We also have hope to calculate the Galois groups of Kummer extensions for higher
rank Drinfeld modules in the future, as well as possibly Anderson’s T -modules.
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4.6 Kummer theory for Drinfeld modules

Note that the case of a completely singular Drinfeld module has been done in [22].

Following [25] and [26] we establish the following algebraic result. Then using cohomol-
ogy and the work of Pink and Rutsche [23] will establish that Gal(KΓ

q /K(φ[q])) ∼= φ[q]t for
deg q large enough. In fact, [26] can be adapted to our case as well, but we will essentially
prove a simpler result that works for our case.

Lemma 4.6.1. Let V be an n-dimensional Fr-vector space. Let B = V t. Let G = End(V )
and for g ∈ G let g · (v1, . . . , vt) = (gv1, . . . , gvt). Let πi be the projection from B to the ith
component of B. Let C be a G submodule of B such that the restriction of πi to C is onto
V , and the restrictions of πi are linearly independent over Fq. Then C = B.

Proof. By induction on t, the base case being trivial. Let

C ′ = {(x1, . . . , xt) : (x1, . . . , xt, 0) ∈ C}.

We want to show that C ′ satisfies the hypotheses of the lemma, with B′ = V t. The map
πi : C ′ → V is either surjective or zero for 1 ≤ i ≤ t. Since we are allowed to multiply by
G, if it is not zero, then it is onto. So suppose that πi = 0. Without loss of generality take
i = 1. Then (x1, . . . , xt, 0) ∈ C implies that x1 = 0. Thus, we get an invertible matrix
M such that Mπt+1 = π1. Now, we want to show that the G action implies that M is a
multiple of the identity, which would be a contradiction to the assumption that πi’s are
independent. For b ∈ C, let Nb ∈ End(V ) be such that ker(Nb) = span{πt+1(b)}. Now,
multiplication by Nb gives that (Nbπ1(b), . . . , Nbπt+1(b)) ∈ C. So Nbπ1(b) = 0, and thus,
π1(b) ∈ span(πt+1(b)) for all b. Since πt+1 is onto π1 must be dependent on πt+1, which
is a contradiction. Therefore π1 is onto. The other conditions of the lemma are already
satisfied. Thus C ′ = B′. But this implies that C = B as required.

We want to show that Hq = Gal(KΓ
q /k(φ[q])) satisfies the conditions of Lemma 4.6.1.

Just as in [25, Sections 2 and 3], there are several steps. Let G = Gal(Ksep/K), H =
Gal(Ksep/K(φ[q])). For any element a ∈ K, let R ∈ Ksep be such that φq(R) = a and let

ξa(σ) = σ(R)−R,

so that ξa : H → φ[q].
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We must investigate the G action induced by ξa on φ[q]. Certainly, for g ∈ G, we have
g(σ(R)−R) = γ ∈ φ[q]. Thus,

ξa(gσg
−1) = g(σ(g−1R)− g−1R) = g(σ(R)−R) = g · ξa(σ),

which makes sense because for x ∈ K(φ[q]), we have g−1x ∈ K(φ[q]) and so is fixed
by σ and so gσg−1x = x, so that gσg−1 ∈ H. To complete the reasoning, notice that
σ(R− g−1R) = R− g−1R since σ fixes K(φ[q]).

Notice that g ·ξa(·) only depends on the image of g when restricted to the field K(φ[q]).
From now on, assume that Gal(K(φ[q])/K) ∼= Aut(φ[q]). We claim that the action of
Aut(φ[q]) can be extended to End(φ[q]) (where φ[q] is regarded as an A/q vector space).

To see this, let g, h ∈ G and res(g), res(h) be their restrictions to K(φ[q]). Define
(res(g) + res(h))ξa(σ) = g · ξa(σ) + h · ξa(σ). Now, since Gal(K(φ[q])/K) ∼= Aut(φ[q]), we
get an End(φ[q]) action on the image of ξa.

Lemma 4.6.2. The cohomology group H1(Gal(K(φ[q])/K), φ[q]) is zero for almost all q.

Proof. By [23, Theorem 0.1], we know that Gal(K(φ[q])/K) ∼= Aut(φ[q]). We may also take
q such that #(A/q) > 2. Let γ ∈ Aut(φ[q]) be equal to θ idφ[q], where θ ∈ A/q, θ 6= 0, 1.
Then γ is in the center of Aut(φ[q]) and is such that the map γx − x is an automor-
phism of φ[q]. Hence, by Sah’s Lemma [21, Chapter 6, Lemma 10.2], the cohomology
H1(Gal(K(φ[q])/K), φ[q]) is zero for almost all q.

Let ξ be the map which takes a ∈ K to ξa : H → φ[q]. Since H acts trivially on φ[q],
we have that ξ : K → H1(H,φ[q]), by abuse of notation. Further the map ξ is A-linear.
That is, suppose that g ∈ G restricts to θ idφ[q], where θ ∈ A and θ 6≡ 0 (mod q). We want
to show that

g · ξa(σ) = ξφθ(a)(σ), for all a ∈ K, σ ∈ H.

Let R ∈ Ksep be such that φq(R) = a, and R′ ∈ Ksep be such that φq(R
′) = φθ(a). Then

g · ξa(σ) = ξa(gσg
−1)

= g · (σ(R)−R)

= φθ(σ(R)−R)

= σ(φθ(R))− φθ(R)

= ξφθ(a)(σ)
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Now, consider the short exact sequence,

0→ φ[q]→ Ksep → Ksep → 0,

where the second map is inclusion, and the third is φq. Taking cohomology gives an
injection

φ(K)/φq(φ(K)) ↪→ H1(G, φ[q]).

We also have a restriction map

H1(G, φ[q]) ↪→ H1(H,φ[q]),

which is injective for almost all l because of the Serre-Hochschild spectral sequence, and
because H1(G/H, φ[q]) = 0. Let us briefly write down the relevant exact sequence for
general G,H and G-module A.

0→ H1(G/H,AH)→ H1(G,A)→ H1(H,A)G/H → H2(G/H,AH)→ H2(G,A)

But the first cohomology group is 0 (since H1(Aut(φ[q]), φ[q]) = 0), and the third is a
subset of H1(H,φ[q]).

Further, the map that ξ induces from φ(K)/φq(φ(K)) to H1(H,φ[q]) is given by the
composition of these two maps, and so is injective for almost all q.

Let ϕi = ξai and let ϕ : H → φ[q]n be given by

σ → (ϕ1(σ), ϕ2(σ), . . . , ϕt(σ)).

The map ϕ induces another map, which we also denote by ϕ, from Hq to φ[q]t.

Let C = Im(ϕ) and B = φ[q]n. Then C is an End(φ[q])-invariant submodule of B.
Now, consider the natural map Γ/φq(Γ) → Γ/φq(φ(K)) → φ(K)/φq(φ(K)). We need for
the first map to be an injection for all but finitely many q. Let

Γ′ = {x ∈ K | φm(x) ∈ Γ for some m ∈ A}.

By Poonen’s theorem, there exists an infinite sequence Q1, Q2, . . . which generates the
module φ(K)/ tor(φ) freely. By our assumption that Gal(K(φ[q])K) = Aut(φ[q]), we know
that tor(φ)[q] is trivial. Let N be such that Γ ⊂ A · {Q1, . . . , Qn}. But then

Γ′ ⊂ A · {Q1, . . . Qn}.

73



There exists M ∈ A such that φM(Γ′) ⊂ Γ. Taking q coprime to M implies that each
projection ϕi(·) is independent over A/q.

Finally, each projection is onto φ[q], again by taking deg q large enough.

Theorem 4.6.1. The group Gal(KΓ
q /K(φ[q])) is isomorphic to φ[q]t for all but finitely

many primes q.

Let q be a prime of K(φ[q]). We want to see that KΓ
q /K(φ[q]) is totally ramified at q

for the primes for which KΓ
q /K is maximal (i.e. for almost all primes q). Let K0 be the

maximal extension of K(φ[q]) in KΓ
q which is unramified at q. Then G0 = Gal(K0/k(φ[q]))

is a End(φ[q]) stable submodule of φ[q]t = Gal(KΓ
q /K(φ[q])). If G0 6= {1}, then viewing

G0 ⊂ φ[q]t, we must have that the projection onto each component is either surjective or
trivial. By reducing t if necessary, we may assume that each projection is surjective. It is
clear that G0 6= φ[q]t, so by Lemma 4.6.1, the projections must be dependent over Fr.
That is, there exists x1, . . . , xt ∈ A such that

0 = x1π1(σ) + · · ·+ xtπt(σ)

0 = σ(R)−R

where φq(R) = a and a = x1a1 + · · ·+ xtat and R = x1R1 + · · ·+ xtRt. This implies that
a ∈ φq(K) and so a1, . . . , at is not linearly independent in Γ/qΓ, which is a contradiction.
Therefore M0 = K(φ[q]). Therefore KΓ

q /K(φ[q]) is totally ramified at primes sitting above
q.

This implies that there exists m ∈ A such that (s,m) = 1 implies that Gal(KΓ
s /K) ∼=

φ[s]t o Aut(φ[s]), as well as the constant field of KΓ
s must be Fr for these s.
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Chapter 5

Analysis and proof of main results

5.1 Main Results

Let F be a global function field with constant field Fr, 2 - r, and a fixed rational prime ∞
of F . Suppose that there is a field extension k/F such that k has constant field Fr and
∞ totally ramifies in k. Let A be the ring of functions of F regular everywhere except
possibly∞, and O the integral closure of A in k, which is therefore the ring of functions of
k regular everywhere except possibly ∞′, the unique prime lying above ∞. Let H be the
Hilbert class field of O, so that H is the maximal unramified abelian extension of k such
that ∞ splits in H.

Let φ : A → C∞{τ} be a rank 2 Drinfeld module with End(φ) 6= A (this implies
that k/F is degree 2). Then there is an isogenous Drinfeld module φ′ with End(φ′) = O.
Let us assume that End(φ) = O and let ψ be the associated rank 1 Drinfeld module
ψ : O → C∞{τ}. Let ηx be the leading coefficient of ψx for each x ∈ O. Then there exists
ψ′ such that ψ′ : O → O′{τ}, ηx ∈ Fr and ψ is isomorphic to ψ′ over k. Let us replace
ψ with ψ′. Denote by K ⊂ H, such that φ : A → F{τ}. There are many examples of
such global function fields k, F with rational prime ∞. Let us consider these situations as
similar to the situation of [11]. In some ways, our situation is more general.

For a finite prime P of K of good reduction for φ, and a ∈ K such that a ∈ OP , the
local ring at P , we may ask whether a + RP generates the field OP/RP as an A-module
(given by the reduction of φ). If it does, then we say that a is a primitive point or root
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mod P . Let x ∈ N, and let

Na(x) = #

{
P a finite prime of K

∣∣∣∣ degP = x, P splits completely in H
a is a primitive root mod P

}
.

Theorem 5.1.1. Let φ : A → K{τ} be a Drinfeld module of rank 2. Let End(φ) = O,
the integral closure of A in k which is a quadratic imaginary extension of F . Let H be the
Hilbert class field corresponding to O and suppose that H/K is Galois. Suppose that ∞
ramifies in k, and suppose that ψ : O → O′{τ} is a sgn-normalized rank 1 Drinfeld module
corresponding to End(φ). Let a ∈ K ∩O′, then there exists δφ(a) > 0 such that

Na(x) = δφ(a)
rx

x
+ O

(
rx log x

x2

)
as x tends to infinity. Furthermore, the constant δφ(a) can be expressed as an Euler product.

Let us now describe the situation of Theorem 5.1.2. Let A = Fr[T ],K = Fr(T ). Let
φT = ∆τ 2 + gτ + Tτ 0 define the Drinfeld module φ : A → K{τ}, where g,∆ ∈ A are
chosen so that φ does not have complex multiplication (so End(φ) = A). Then K has
infinite rank when considered as an A-module, so let a1, . . . , at be t elements of K, which
generate a free A-submodule of K. Let Γ be this submodule. Also, assume that all the
fields KΓ

q = K(φ[q], q−1Γ) are geometric, where q runs over all monic irreducibles of A.
For P a monic irreducible of A, such that φ has good reduction at P and ai ∈ OP for all
1 ≤ i ≤ t, let ΓP be the submodule of φ(FP ) generated by a1 + RP , . . . , at + RP . We say
that φ(FP ) = ΓP to mean that P is as above and ΓP = φ(FP ) as sets. For x ∈ N, define

NΓ(x) = #{P prime | degP = x, ΓP = φ(FP )}.

Theorem 5.1.2. Let x ∈ N, Γ be a rank t submodule of the rational points of φ and
φ : Fr[T ] → Fr(T ){τ}. Suppose that t ≥ 18. If all the fields KΓ

q are geometric then there
exists δφ(Γ), such that

NΓ(x) = δφ(Γ)
rx

x
+ O

(
rx log x

x2

)
as x→∞.

Otherwise there exists r0 ∈ N and constants δ1
φ(Γ), δ2

φ(Γ), . . . , δr0φ (Γ) such that as x→∞
and x ≡ j (mod r0) then

NΓ(x) = δjφ(Γ)
rx

x
+ O

(
rx log x

x2

)
.
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Definition 5.1.1. An extension of global function fields K/F is called geometric whenever
they have the same constant field. That is if Fp∩K = Fp∩F , where Char(K) = Char(F ) =
p.

Our intuition is that extensions of the constant field do not change the underlying
geometry of the function field. Therefore, if the constant field stays the same in the
extension field, this implies a fundamental change in the geometric object underlying the
function fields.

5.2 Effective Chebotarev Density Theorem

For a more complete description see [8, Chapter 6].

Let L and L′ be two global function fields with Fr ⊂ L ⊂ L′. Let G = Gal(L′/L). Let
FL,FL′ denote the constant fields of L and L′ respectively.

Let σP be the Artin symbol (which denotes a conjugacy class of G) for P with respect
to L′/L, and dL = [FL : Fr], and rL′ = [FL′ : FL].

Also, for C ⊂ G a conjugacy class, define

πC (x) = {P | degP = x,P is a prime unramified in L′/L, and σP ⊂ C }.

Theorem 5.2.1 ([8], Chapter 6, Section 4). . Let L′/L be a finite Galois extension with
Galois group G. Let C ⊂ G be a conjugacy class whose restriction to FL′ is the a-th power
of the Frobenius automorphism of FL. Then for x ∈ N, if x 6≡ a (mod rL), we have

πC (x) = 0.

If x ≡ a (mod rL), ∣∣∣∣πC (x)− rL
|C |
|G|

rdLx

x

∣∣∣∣ ≤
2|C |
x|G|

((|G|+ gL′rL′)(r
dLx)1/2 + |G|(2gL + 1)(rdLx)1/4 + gL′rL′ + |G|d/dL),

where gL′ , gL denote the genus of L′ and L respectively, and d is a constant depending on
L(d = [L : Fr(T )] where T is a separating element for L/Fr).

Although the effective version is not explicitly listed as a theorem, one can trace through
[8, Chapter 6, Section 4] to find all the constants.
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5.3 Main term of Theorem 5.1.1

Let Na(x) be the number of primes of F of degree x which split completely in H and which
satisfy Artin’s conjecture; that is, they do not split completely in any Ka

a,s. Say that a
prime P of H is of first degree if it lies over a prime P and the residue field extension is
of degree 1. Note this is the same as the previous definition of a prime being first degree,
except we have replaced K with F and k with H.

Let N(x, y) be the number of primes of first degree of H with degree equal to x which
do not split completely in any Ka

a,s with deg a, deg s ≤ y.

Let Mx(y1, y2) be the number of first degree primes of H of degree x which split com-
pletely in some Ka

q or Kq with y1 ≤ deg q ≤ y2 or y1 ≤ deg q ≤ y2.

Proposition 5.3.1.

Na(x) = [H : K]−1N(x, y) + O(M(y, x)).

Proof. We have that Na(x) ≥ [H : K]−1N(x, y) −Mx(y, x). This is because if φ[q] ⊂ Fp

implies that 2 deg q ≤ deg x, and ψ[q] ⊂ Fp implies that deg q ≤ x.

Now Na(x) ≤ [H : K]−1N(x, y) because any prime counted by the left hand side must
split completely in H (and hence be a product of [H : K] distinct primes of H, none of
which split completely in any field Ka

q or Kq). Hence, these primes certainly do not split
completely in any field Ka

q with deg q ≤ y or Kq with deg q ≤ y.

To estimate N(x, y), which we expect to be the main term, we use the effective Cheb-
otarev density theorem Theorem 5.2.1.

Let us fix a, s, and take L′ = Ka
a,s and L = H. We know that we may take rL′ = dL = 1.

Since we are interested in the primes which split completely, we let C = {1}, and write let
πa,s denote πC for this particular choice of L′ and L. Let the genus of Ka

a,s be g(a, s).

Proposition 5.3.2. There exists a positive constant C ′ independent of x, a, s such that∣∣∣∣πa,s(x)− rx

n(a, s)x

∣∣∣∣ ≤ C ′rx/2

x
(deg a + deg s) .

Proof. Applying Theorem 5.2.1 to our special case, we get∣∣∣∣πa,s(x)− qx

n(a, s)x

∣∣∣∣ ≤
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2

xn(a, s)

(
(n(a, s) + g(a, s))rx/2 + n(a, s)(2gH + 1)rx/4 + g(a, s) + n(a, s)d

)
,

where d is the degree of H/Fr(t) for some fixed separating transcendence element t.

We can use the Riemann-Hurwitz formula [27, Theorem 7.16] to bound the genus of
Ka

a,s in terms of the different of Ka
a,s/H and gH :

2g(a, s)− 2 = n(a, s)(2gH − 2) + d(a, s)

Using this our formula becomes

∣∣∣∣πa,s(x)− rx

n(a, s)x

∣∣∣∣ ≤ |C|
xn(a, s)

(
(n(a, s) + d(a, s))rx/2 + n(a, s)rx/4 + d(a, s)

)
,

where C is a constant independent of a, s.

Write π1 ≤ πa,s(x) ≤ π1 + π2. Let 2 ≤ d ≤ n(a, s). Let us count the primes of degree
x with residue degree d. These correspond to a subset of primes of degree x/d in some
subfield of H. Thus π2 is bounded by rx/2. Thus, we can take πa,s(x) to count only the
primes of first degree which split completely in Ka

a,s.

Using Proposition 4.4.4, we obtain∣∣∣∣πa,s(x)− rx

n(a, s)x

∣∣∣∣ ≤ |C ′|rx/2x
(deg a + deg s) .

Let

S = {q ⊂ O | q is a prime ideal of O of first-degree}
T = {q ⊂ A | q is a prime ideal of A}
Sy = {q ∈ S | deg q ≤ y}
Ty = {q ∈ T | deg q ≤ y}

Let S∗, S∗y be the set of ideals of O which are square-free products of ideals from S
(resp. Sy), including 1. Define T ∗ and T ∗y similarly.
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Proposition 5.3.3. Let y = lnx−ln 2
ln r

and let x→∞. Then∣∣∣∣∣∣∣∣∣N(x, y)−
∑
a∈S∗y
s∈T ∗y

µ(a)µ(s)rx

n(a, s)x

∣∣∣∣∣∣∣∣∣ = O

(
(r(3/4+ε)x

x

)
,

for any ε > 0.

Proof. Using the inclusion-exclusion principle we obtain that

N(x, y) =
∑
a∈S∗y
s∈T ∗y

µ(a)µ(s)πa,s(x).

Thus, we have the following estimate for N(x, y)∣∣∣∣∣∣∣∣∣N(x, y)−
∑
a∈S∗y
s∈T ∗y

µ(a)µ(s)rx

n(a, s)x

∣∣∣∣∣∣∣∣∣ ≤
|C3|rx/2

x

∑
a∈S∗y
s∈T ∗y

deg s+ deg a

 ≤ C5
rx/2

x

r2y

y
(2C4ry/y)

where the last inequality comes from counting

#Sy ≤ C1r
y/y

#Ty ≤ C2r
y/y,

using the analogue of the prime number theorem [27, Theorem 5.12]. Taking x (and hence
y) as large as we need, we can guarantee that 2C4ry/y ≤ rx/4 for x large enough. Thus the
remainder term is at most

C6r
(3/4+ε)x,

for any ε > 0.

Proposition 5.3.4. The sum

δ =
∑
a∈S∗
s∈T ∗

µ(a)µ(s)

n(a, s)
,
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converges absolutely. Further, as x→∞ we have∣∣∣∣N(x, y)− δ r
x

x

∣∣∣∣ = O

(
rx

x2

)
Proof. We see, ∑

a∈S∗,s∈T ∗
n(a, s)−1 =

∑
a∈S∗,s∈T ∗

ϕ(a, s)

n(a)m(s)
.

Thus ∑
a∈S∗,s∈T ∗

ϕ(a, s)

n(a)m(s)
=
∑
a∈S∗

n(a)−1
∏
q∈T

(
1 +

ϕ(a, q)

m(q)

)
.

Now, the possible values for m(q) are

m(q) =


r2 deg q − 1 if q is inert in O
r2 deg q − 2 · rdeg q + 1 if q splits in O
r2 deg q − rdeg q if q ramifies in O

Since the number of q such that deg q = d is O(rd/d), we see that the infinite product∏
q∈T (1 +m(q)−1) converges. Thus

∑
a∈S∗

n(a)−1
∏
q∈T

(
1 +

ϕ(a, s)

m(s)

)
�
∑
a∈S∗

n(a)−1
∏
q∈T

(q,a)6=1

(
1 +

ϕ(a, q)

m(q)

)
.

Continuing ∑
a∈S∗

n(a)−1
∏
q∈T

(
1 +

ϕ(a, q)

m(q)

)
�
∑
a∈S∗

2ν(a)

n(a)
,

where ν(a) is the number of prime divisors of a.

The latter product converges because
∑
n(q)−1 converges by [18, Theorem 4.5], because

our sum is over square free ideals which are products of first-degree primes, and the sum
in [18] is over all square free ideals.

Exactly as in [18], we have

∑
P∈S

n(P)−1 �
∞∑
i=1

1

i(ri − 1)
<∞,
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because of the prime number theorem for O and n(P) = rdegP(rdegP − 1) for degP large
enough.

Thus, let

δ =
∑
a∈S∗
s∈T ∗

µ(a)µ(s)

n(a, s)

Consider∣∣∣∣∣∣∣∣∣
∑
a∈S∗y
s∈T ∗y

µ(a)µ(s)

n(a, s)
− δ

∣∣∣∣∣∣∣∣∣ ≤
∑

a∈S∗\S∗y or

s∈T ∗\T ∗y

n(a, s)−1 ≤
∑

a∈S∗\S∗y
s∈T ∗

ϕ(a, s)

n(a)m(s)
+

∑
a∈S∗

s∈T ∗\T ∗y

ϕ(a, s)

n(a)m(s)

By a similar argument the above estimate is bounded by a constant times the following,∑
a∈S∗\S∗y

n(a)−1 +
∑

s∈T ∗\T ∗y

m(s)−1.

But then we see that ∑
s∈T ∗\T ∗y

m(s)−1 �
∑

q∈T\Ty

m(q)−1
∏
`∈T

(1 +m(l)−1).

Since the product appearing above converges, and because m(q)−1 ≤ (rdeg q − 1)−2 for
deg q large enough, we obtain that∑

s∈T ∗\T ∗y

m(s)−1 �
∑
j≥y

rj

(rj − 1)2
� (ry − 1)−1,

by the integral test and the Riemann hypothesis for function fields. A similar argument
shows that ∑

a∈S∗\S∗y

n(a)−1 � 1/x.

Thus,

|N(x, y)− δrx/x| = O

(
rx

x2

)
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Let z = x
2
− ν log x, where ν is a constant to be chosen later such that ν ≥ 1/ log r.

Mx(y, x) ≤Mx(y, z) +Mx (z, x)

Proposition 5.3.5.

Mx(y, z) = O

(
rx

x2

)
.

Proof. Consider

Mx (y, z)�
∑

q∈Sz\Sy

(
rx

n(q)x
+ O

(
deg q

rx/2

x

))
+

∑
q∈Tz\Ty

(
rx

m(q)x
+ O

(
rx/2

x
deg q

))

Since ν ≥ 1/ log r, we have rz ≤ rx/2/x. Thus, the sum of all the error terms above is
bounded by

rx/2

x

∑
y≤i≤x/2−ν log x

ri · i/i� rx/2+z/x� rx/x2.

Now, ∑
q∈Tz\Ty

m(q)−1 �
∑
y<i≤z

ri

(ri − 1)2
� 1

x
.

As before, a similar bound applies to the sum over q ∈ Sz \ Sy. Thus,

Mx (y, z) = O

(
rx

x2

)
.

To take care of both of the sums, we will require the use of a Brun-Titchmarsh type
result, from [17, Theorem 4.3]. Let us state the result. Let U be an ideal of O and b be
an element in O with b ∈ (O/U)∗. Let π(N ; b,U) denote the number of prime ideals P′ in
O′ such that if NH/L(P′) = (β) for some positive element (i.e., sgn(β) = 1), then β ≡ b
(mod U) and deg β = N .

Theorem 5.3.1 ([17], Theorem 4.3). There exists effective constants C7 and C8, depending
only on the genus g of L and the class number h = [H : L], such that if N > degU+C7 +
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C8 log degU, then we have

π(N ; b,U) ≤ C9hq
N

ϕ(U)(K1 + 1− 2g)
,

where ϕ(U) is the order of (O/U)∗ and K1 is equal to

min

{[
N − 1

h

]
,

[
N − degU− C7 − C8 log degU + 4g

2

]}
,

and C9 is a positive effective constant depending only on L.

Now,

Mx (z, x) ≤
∑

q∈S\Sz

πq,1(x) +
∑

q∈T\Tz

π1,q(x)

Proposition 5.3.6. ∑
q∈T\Tz

π1,q(x) = O
(
rx/2

)
.

Proof. For q ∈ T \Tz, let U = qO. Apply the Brun-Titchmarsh theorem above to π(x; 1,U).
To check the condition,

degU + C7 + C8 log degU ≤ x/2 + C7 + C8 log x− C8 log 2 < x,

for x large enough. Now, if P splits completely in K1,q then P ≡ 1 (mod q) by our work
in the rank 1 case. If we allow h to be absorbed into the implicit constant, we see that

K1 + 1− 2g � N,

so that

π(x; 1,U)� qx

ϕ(U)x
.

Now, by our choice of U, we have that ϕ(U)� rx/x.

Thus, ∑
q∈T\Tz

π1,q(x) ≤
∑

q∈T\Tz

π(x; 1, qO)�
∑
i≥z

ri

(ri − 1)2
� r−z.

Hence, ∑
q∈T\Tz

π1,q(x)� rx−z/x = O(rx/2).
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Proposition 5.3.7. ∑
q∈S\Sz

πq,1(x) = O

(
rx log x

x2

)
.

Proof. Let us write∑
q∈S\Sz

πq,1(x) =
∑

q∈S\Sx/2+log x

πq,1(x) +
∑

q∈Sx/2+log x\Sz

πq,1(x).

Consider first the sum
∑

q∈S\Sx/2+log x
πq,1(x). Let P′ be a prime of H which splits

completely in Kq,1 with x/2 + log x < deg q ≤ x. Then, write NH/L(P′) = (β) for positive
β ∈ O, with (β) prime. By 4.1.3, we have q | (β− 1), and ψ(β−1)q−1(a) ∈ P′. Also, we have
that degP′ = deg β = deg(β − 1). Hence

0 ≤ deg((β − 1)q−1) ≤ x/2− log x

. Hence, the prime P′ divides the ideal in O generated by∏
M⊂O an ideal

0≤degM≤x/2−log x

ψM(a).

Recall that
ψM(a) =

∏
λ∈ψ[M]

(a− λ) 6= 0

since a is non-torsion. Also,

degψM(a) = − ord∞(ψM(a)) ≤ deg a+
∑

06=λ∈ψ[M]

max{deg a,− ord∞(λ)}

≤ rdegM(deg a+ C)

where C is a positive constant, by Proposition 4.4.3.
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The number of divisors of the above element of O of degree x is therefore less than

deg

 ∏
M⊂O an ideal

0≤degM≤x/2−log x

ψM(a)

 /x.

The number of ideals of O of degree i is O(ri) (by the Riemann-Roch theorem Theorem
3.1.1[27, Theorem 5.4]). Thus, the number of primes we are interested in is bounded by

O

x/2−log x∑
i=0

r2i(deg a+ C)

 /x = O

x/2−log x∑
i=0

r2i

 /x = rx/x2 log r+1 = O

(
rx

x2

)
.

We now want to bound the sum ∑
q∈Sx/2+log x\Sz

πq,1(x).

For q in this range, we know that

πq,1(x) ≤ π(x; 1, q)� rx

rdeg q · x
.

Thus, ∑
q∈Sx/2+log x\Sz

πq,1(x)� rx

x

∑
q∈Sx/2+log x\Sz

1

rdeg q

Using the prime number theorem [27, Theorem 5.12] for O we obtain∑
q∈Sx/2+log x\Sz

πq,1(x)� rx

x
·

∑
z<i≤x/2+log x

1

i
= O

(
rx log x

x2

)
.

Thus, we conclude the proposition.

Proposition 5.3.8. If a is non-torsion then

δφ(a) =
1

2

∑
a∈S
q∈T

µ(a)µ(s)

n(a, s)
> 0.
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Proof. The sum converges absolutely, so we may write

δ =
∑
s∈T

µ(s)

m(s)

∑
a∈S

µ(a)ϕ((a, s))

n(a)

But∑
a∈S∗

µ(a)ϕ((a, s))

n(a)
=

∏
q∈S

(
1− ϕ((q, s)

n(q)

)
=

∏
q∈S

(
1− 1

n(q)

)∏
q|s

(
1− [Kq : H(ψ[q])]−1

) (
1− n(a)−1

)−1

For finitely many q, b we will have φq(b) = a. We can adjust the terms for this, just as
in [11],[18]. Multiply all such q to form the ideal Σ. Then

δ =
∏
q

(
1− n(a)−1

) ∏
(q,Σ)=1,q inert

(
1−m(q)−1

)
∏

(q,Σ)=1,q=q1q2

(
1−m(q)−1

) (
1− [Kq1 : H(ψ[q1])]

−1
)2 (

1− n(q1)
−1
)−2

∏
(q,Σ)=1,q|∆

(
1−m(q)−1

) (
1− [Kq : H(ψ[q])]−1

) (
1− n(q)−1

)−1

Thus, we have δ > 0, and since δ = δφ(a) · 2 the proposition follows.

This concludes the proof of Theorem 5.1.1.

5.4 Proof of Theorem 5.1.2

Let π(x, s) be the number of primes P of F of degree x with σP ∈ Cs. Let S = {q ⊂ A |
q is a prime ideal of A}, S∗ be the ideals which are square-free products of the ideals in S,
Sy = {q ∈ S | deg q ≤ y} and S∗y be defined similarly to S∗.

Then
N(x, y) =

∑
s∈S∗y

µ(s)π(x, s)
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Proposition 5.4.1. Let q ∈ A be such that [KΓ
q : F ] = |φ[q]|t · # Aut(φ[q]) = r2t deg q ·

(r2 deg q − 1)(r2 deg q − rdeg q). Then

|Cq| � rdeg q(t+3)

Proof. We want to count the number of pairs (χ, γ) ∈ φ[q]t o Aut(φ[q]) such that either
ker(γ−1) is cyclic and χ(Γ) ⊂ Im(Γ) or ker(γ−1) = φ[q], and the rank of χ(Γ) is 0 or 1. The
latter condition happens O(rdeg q(t+1))( times and the former condition happens ∼ rdeg q(3+t)

and combining both we get that |Cq| = rdeg q(3+t)+O(rdeg q(t+2)). These estimates are similar
to the classical case for elliptic curves and are carried out by counting arguments for Fr-
vector spaces.

Proposition 5.4.2.
|Cs|
n(s,Γ)

� r− deg s(t−2) ·
∏
q|s

(rdeg q − 1)−3,

as deg s→∞.

Proof. Write
|Cs|
n(s,Γ)

=
|Cs′ |

n(s′,Γ)

|Cs0|
n(s0,Γ)

.

Thus, since s0 has at most finitely many possibilities, there exists constants C7, C8 such

that 0 < C7 ≤
|Cs0 |
n(s0,Γ)

≤ C8 ≤ 1. Also,

|Cs′|
n(s′,Γ)

� rdeg s′(t−2)
∏
q|s′

(rdeg q − 1)−3 ≤ rdeg s(t−2)
∏
q|s

(rdeg q − 1)3,

hence the result.

Proposition 5.4.3. Let the constant field of KΓ
s be Fs and let rs = [Fs : Fr]. There exists

constants δ(s, j) ≥ 0 for j = 1, . . . , rs such that if x ≡ j (mod rs)∣∣∣∣π(x, s)− δ(s, j)r
x

x

∣∣∣∣ = O

(
rx/2

x
deg s

)
.

Further, there exists a polynomial M ∈ A such that if s is coprime to M , there exists
a constant δ(s) such that∣∣∣∣π(x, s)− δ(s)r

x

x

∣∣∣∣ = O

(
rx/2+deg s(t+3)

x
deg s

)
.
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Proof. There are conjugacy classes C1, . . . ,Cu of Gs such that

Cs =
u⋃
i=1

Ci.

Let ai be the integer such that Ci is the aith power of the Frobenius automorphism of
Fs.

Let

δ(s, j) = rs

 ∑
i,ai≡j (mod rs)

Ci

n(s,Γ)−1.

Let g(s,Γ) be the genus of KΓ
s . By the Riemann-Hurwitz formula [27, Theorem 7.16] and

Theorem 4.3.3, we get that

g(s,Γ)� n(s,Γ)

rs
(2gF − 2) + (t+ 2) deg s.

Now, applying the Chebotarev density theorem Theorem 5.2.1, we get that∣∣∣∣π(x, s)− δ(s, j)r
x

x

∣∣∣∣� δ(s, j)

x
n(s,Γ)(t+ 2) deg srx/2

By Proposition 5.4.2, we know δ(s, j)� rdeg s(t+3), so∣∣∣∣π(x, s)− δ(s, j)r
x

x

∣∣∣∣� rdeg s(t+3)(t+ 2) deg srx/2.

Proposition 5.4.4. Let y = (log x − logC9 − log 4)/2, and let r0 be the degree of the
constant field extension of KΓ

M/K. With the understanding that δ(s, j) only depends on
the residue class of j (mod rs) where rs is the constant field extension degree of KΓ

s /K,
then as x ≡ j (mod r0) and x→∞,∣∣∣∣∣∣N(x, y)−

∑
s∈S∗y

µ(s)δ(s, j)
rx

x

∣∣∣∣∣∣ = O(rx(1−ε)),

where N is the maximum of rs for any s, and δ(s, j) is the corresponding density coming
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from the Chebotarev density theorem.

Proof. Summing over all s ∈ S∗y , we get∣∣∣∣∣∣N(x, y)−
∑
s∈S∗y

µ(s)δ(s, j)
rx

x

∣∣∣∣∣∣ = O

rx/2
x

∑
s∈S∗y

deg srdeg s(t+3)


= O

(
rx/2

x
x

∏
q prime,deg q≤y

(1 + rdeg q(t+3))

)
= O

(
rx/22C4ry/yryr

y)
= O

(
rx/2rC9ryy

)
Now, choose y = (log x− logC9 − log 4)/2 so that rC9ryy ≤ rx/4.

Proposition 5.4.5.

δjφ(Γ) =
∑
s∈S∗

µ(s)δ(s, j)

converges absolutely.

Proof. By taking the logarithms, we need only check the convergence of

∑
q∈S

δ(q, j)�
∞∑
i=0

ri

ri(t−2)(ri − 1)3
,

which does converge.

Proposition 5.4.6.∣∣∣∣∣∣
∑
s∈S∗

µ(s)δ(s, j)rx/x−
∑
s∈S∗y

µ(s)δ(s, j)rx/x

∣∣∣∣∣∣ = O(rx/x2).

Proof. As usual,∑
s∈S∗\S∗y

δ(s, j)�
∑
i≥y

ri

ri(t−2)(ri − 1)3
� r−y(t+1) = O(x−(t+1)/2).
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so the difference we want is O(rx/x2) for t ≥ 3.

Consider the following bound from [1]. We restate it as follows

Proposition 5.4.7 ([1], Proposition 5.1). Let l ≥ 1 be an integer, and let

Tl := {P of good reduction for Γ such that [ΓP : Fr] ≤ l}.

Then
#Tl ≤ C · rl(1+2/t).

Now, if φ(FP )/ΓP [q] 6= 0 then [ΓP : Fr] < x− z for any q with deg q > z.

We will split the interval (y, x] into (y, αx], (αx, αx+A log x], and (αx+A log x, x] for
a suitable choice of α and A. The first interval is handled by Chebotarev density theorem.
The second interval is handled by the Brun-Titchmarsh theorem and the third is handled
by the use of the proposition from [1]. Let us concentrate on the first interval which will
determine the choice of α.

Proposition 5.4.8. Let α = 1/10− 2 logr(x)/x, then as x→∞

M(y, αx) = O

(
rx

x2

)
.

Proof. If we consider the restriction of σP ∈ Cq to Gal(K(φ[q], q−1a1)/K) there are at most

O(r4 deg q) possibilities for σP . The size of the Galois group is r6 deg q + O(r5 deg q), so that
using the Chebotarev density theorem again we obtain

M(y, αx) ≤
∑

q∈Sαx\Sy

rx−2 deg q

x
+ O(r4 deg q · rx/2x)

The sum of the error terms is O(rx(4α+α+1/2)) = O(rx(1−ε)). Then the error term is

O(rx/x2). Now, the number of q with deg q = i is O( r
i

i
), thus the first summand is

bounded by a constant times ∑
i≥y

rx−i

xi
� r−y

rx

x2
= O

(
rx

x2

)
.
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Proposition 5.4.9. Suppose that t ≥ 18, then there exists A > 0 such that for z =
αx+ A log x,

M(z, x) = O(rx/x2),

as x→∞.

Proof. By Proposition 5.4.7[1, Proposition 5.1], the number of P ’s such that σP ∈ Cq

with deg q > z, and degP = x, is bounded by O(r(x−z)(1+2/t)).

Notice that x− z = (9/10)x− (A− 2/ log r) log x.

This error is bounded by O(r0.9x(1+2/t)x−(A log r−2)(1+2/t). Notice that if we want rx on
top, we need that t ≥ 18. As long as A is sufficiently large, we get an overall bound of

O

(
rx

x2

)
.

Proposition 5.4.10.

M(αx, αx+ A log x) = O(rx log x/x2)

as x→∞.

Proof. We now apply the Brun-Titchmarsh theorem along the interval (αx, αx+ A log x].
Suppose that σP ∈ Cq for some q with αx < deg q ≤ αx + A log x. This now implies that
P ≡ 1 (mod q), because φP−1 and φq must share a common root not equal to 0. Therefore,
after reducing modulo q, the polynomial φP−1 must not be separable. Therefore q | P − 1.
Hence, we may apply the Brun-Titchmarsh theorem to get that

M(αx, αx+ A log x)�
∑

αx≤i≤αx+A log x

rxri

(ri − 1)ix
= O

(
rx log x

x2

)
.

Now, to examine the density ∑
µ(s)δ(s, j),
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we note that for q large enough KΓ
q /K is totally ramified at q and unramified outside q∞∆.

This implies that there exists N0 ∈ A and r0 ∈ N such that for each j = 1, . . . , r0∑
µ(s)δ(s, j) =

∑
m|N0

µ(m)δ(m, j)
∏

(q,N0)=1

(1− δ(q)).

If all the extensions KΓ
q are geometric (corresponding to r0 = 1) this leads to a constant

as in the first part of Theorem 5.1.2. Otherwise, the densities corresponding to m for
various m |M may be zero or non-zero corresponding to different constants depending on
the residue class of the degree, where r0 is the degree of the constant field of KΓ

M over Fr.
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Chapter 6

Future work

Very briefly, we can extend our work in several ways. Firstly, we hope to extend Theorem
5.1.2 to include Drinfeld modules defined over more complex A, not just A = Fr[t].
Also, we want to consider the problem of changing φ to having a higher rank but being
completely singular (having CM by a rank 1 Drinfeld module). Another challenge would
be to increase the rank of φ, with no additional assumptions. Finally, the most difficult
part is to consider a situation where φ is rank l · d, and has CM by ψ of rank d (which
would combine knowledge of all situations).

Conjecture 6.0.1. Let K have finite A-characteristic and let

φ : A→ K{τ}

be a Drinfeld module.

Then given a ∈ K, a generates φ(FP ) for infinitely many P , under suitable conditions
on K,A, φ.

Conjecture 6.0.2. Let φ : A→ K be a rank d Drinfeld module with CM by ψ which is of
rank ` | d. Let Γ be a free submodule of the rational points of φ. Assuming that the rank
of Γ is sufficiently large, there exists δΓ(φ) such that

NΓ(x) = δΓ(φ)
rx

x
+ o

(
rx

x

)
.

Conjecture 6.0.3. Let E/Q have CM by Ok. Then E(Fp) = Ok · P for infinitely many
primes p of k.
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This is very similar to Artin’s conjecture. If we can link the above conjecture to the
Lang-Trotter conjecture, that would be interesting.

Let p be a rational prime which is inert in k, of good reduction for E. What is the
relation between E(Ok/pOk) and E(Z/pZ). Of course the sizes of these sets are well-known
to be related. The endomorphism ring of E(Ok/pOk) is large, so what more can be said?

Of course to do this there are several obstacles, which we will list below.

1. (φ(FP )/ΓP )[q] = 0 if and only if P lies in some conjugacy class Cs (in particular for
more general A).

2. We need to determine the size of Cq, or at least an asymptotic. To carry out these
calculations for Drinfeld modules of higher rank than 2 may be more complicated
(here ”rank” does not mean the rank of the free subgroup Γ, but the rank of φ[a]).

3. We need to know bounds for the number of P such that ΓP < y, among other things.
For guidance see [1]. This could get quite complicated if ψ is non-trivial, but φ is
not completely singular.

4. We need to determine bounds for the degree of the different of KΓ
q /K, D(KΓ

q /K). In
particular, what if we take more general A? Gardeyn [9] only deals with A = Fq[T ].
Perhaps there is an easy trick to bypass this problem?

5. We need to develop the Kummer theory in this more general case. More general A
may cause problems. If we keep track of φ, ψ it seems doable. In the case where ψ is
rank 1, this has been done in [22].
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