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DAVID TWEEDLE

These notes will serve as reference for Math 3273. The notes follow
[Axl15] and [GH17]. Thank you for reading.

1. Row, column, nullspace, left-nullspace and
rank-nullity theorem

Let A be an n-by-m matrix with entries in a field k. You can think
of k being either R or C. A row vector is (x1, x2, . . . , xm). A column
vector is

v =


x1
x2
...

xn


and the transpose of v is the row vector vT = (x1, x2, . . . , xn). The
set of all column vectors consisting of n entries in the field k will be
denoted kn.
Definition 1.1. The nullspace of A, denoted null(A), is the set of all
column vectors v ∈ kn such that Av = 0.
Definition 1.2. The rowspace of A, denoted row(A), is defined to be
the set of all linear combinations of the rows of A.
Definition 1.3. The columnspace of A, denoted col(A), is defined to
be the set of all linear combinations of the columns of A.
Definition 1.4. The left-nullspace of A, denoted null(AT ), is defined
to be the set of all vectors y such that yT A = 0T .

Proposition 1.5. Suppose A and B are both m-by-n matrices and ϵ
is an elementary row operation. Suppose also that A

ϵ−→ B and I
ϵ−→ E.

Then B = EA.

Theorem 1.6. Let A be an m-by-n matrix with entries in the field
k. Then there exists an invertible matrix P and a reduced row-echelon
matrix R such that A = PR.
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Definition 1.7. The nullity of a matrix A, denoted nullity(A), is de-
fined to be the dimension of the nullspace of A.

The rank of A, denoted rank(A), is defined to be the dimension of
the row space of A.

Theorem 1.8. Let A be an m-by-n matrix. Then
rank(A) + nullity(A) = n.

2. Direct sums, basis, dimension

Definition 2.1. Let U and W be subspaces of a vector space V . Sup-
pose

a) U + W = V
b) U ∩ W = 0.

Then we say that V is the direct sum of U and W and write V = U⊕W .
Definition 2.2. Let S ⊆ V . A linear combination of vectors from S
is a vector v such that

v =
n∑

i=1
civi

where v1, . . . , vn ∈ S and c1, c2, . . . , cn ∈ k.
The span of S, denoted span(S), is defined to be the set of all linear

combinations of vectors from S.
Definition 2.3. Suppose that v1, . . . , vn is a list of vectors from V .
Consider the equation

n∑
i=1

civi = 0.

The trivial solution is c1 = c2 = · · · = cn = 0.
The list of vectors is called linearly independent if the only solution

to the equation is the trivial solution. Otherwise, the list is called
linearly dependent.
Definition 2.4. Let S be a set of vectors. Then S is called linearly
dependent if for any positive integer n ≥ 1, any list of n distinct vectors
from S is linearly independent.

Otherwise, S is called linearly dependent.
Definition 2.5. If v1, v2, . . . , vn is a list of linearly independent and
spanning vectors for V then we say that the list v1, . . . , vn is a basis
for V .

The notion of an infinite basis is as follows: S is a basis for V if
span(S) = V and S is linearly independent.
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Theorem 2.6. Suppose v1, . . . , vn is a basis for V . If ∑n
i=1 civi =∑n

i=1 divi then ci = di for all i = 1, 2, . . . , n.

Proposition 2.7. Let v1, . . . , vn be a list of vectors in V . Suppose
v = ∑n

i=1 civi with cj ̸= 0 for some 1 ≤ j ≤ n.
a) Replacing vj with v does not change the span of the list.
b) If the list v1, . . . , vn is linearly independent, then it is still lin-

early independent after replacing vj with v
c) If v /∈ span(v1, . . . , vu) for some u < n, then there exists j > u

with cj ̸= 0
d) If v /∈ span(v1, . . . , vn) then v1, . . . , vn, v is linearly indepen-

dent.

Theorem 2.8. Let W ⊂ V be a subspace of V . Suppose V has a finite
basis v1, . . . , vn. Suppose w1, . . . , wk ∈ W are linearly independent.
Then there exists wk+1, . . . , wu ∈ W such that w1, . . . , wu is a basis
for W and u ≤ n.

Definition 2.9. Let V be a vector space with basis v1, . . . , vn. Then
the dimension of V , denoted dim(V ), is defined to be n.

If V = 0 then we write dim(V ) = 0 (or check that the empty list is
linearly independent by definition, and spanning by convention).

If V has no finite basis (equivalently, V contains an infinite linearly
independent set), then write dim(V ) = ∞.

Theorem 2.10. Let V be a vector space and U ⊂ V a subspace. Then
there is a subspace W such that V = W ⊕ U .

Theorem 2.11. Let V be a vector space with subspaces V1, . . . , Vn.
Then the following are equivalent

a) V = V1 ⊕ V2 ⊕ · · · ⊕ Vn

b) every v ∈ V can be written uniquely as v = v1 + · · · + vn where
vi ∈ Vi

Proof. Omitted. □

3. Linear transformations and matrices
Definition 3.1. Let V be a vector space with basis B = v1, . . . , vn.
Let v ∈ V . Then there are unique scalars c1, c2, . . . , cn such that

v =
n∑

i=1
civi.

We define the coordinate vector of v relative to B, denoted by [v]B,
to be [v]B = (c1, c2, . . . , cn)T .
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Proposition 3.2. Let V be a vector space and suppose that V can be
written as the direct sum of subspaces

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn.

Suppose that B1 = v1, . . . , vr1 is a basis for V1, B2 = vr1+1, . . . , vr1+r2

is a basis forV2, ..., Bn = vr1+···+rn−1+1, . . . , vr1+···+rn is a basis for Vn.
Then B1∪B2∪· · ·∪Bn is a basis for V , and for all v ∈ V the coordinate
vector of v may be written as

x1
x2
...

xn


where v = v1 + · · · + vn is the decomposition from Theorem 2.11 where
vi ∈ Vi and xi = [vi]Bi

.‘

Proof. Omitted. □

Proposition 3.3. Let B = v1, . . . , vn be a basis of a vector space V .
Then

a) for all v, w ∈ V ,
[v + w]B = [v]B + [w]B

b) for all v ∈ V and c ∈ k

[cv]B = c[v]B.

Proof. Omitted. □

Definition 3.4. Let V and W be vector spaces (always over a common
field k). Let T : V → W be a function such that

a) T (v + v′) = T (v) + T (v′) for all v, v′ ∈ V
b) T (cv) = cT (v) for all c ∈ k, v ∈ V .

Then T is called a linear transformation from V to W . If V = W then
T : V → V is called a linear operator on V .
Definition 3.5. Let k be a field. An m-by-n matrix over k is an array
of mn elements of k arranged into m rows and n columns:

a11 a12 · · · a1n

a21 a22 · · · a2n
... ... . . . ...

am1 am2 · · · amn


The set of all m-by-n matrices over k is denoted by km×n.
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Definition 3.6. Let T : V → W be a linear transformation. Let
B = v1, . . . , vn be a basis for V and B′ = w1, . . . , wm be a basis for
W . For each j = 1, 2, . . . , n write

T (vj) =
m∑

i=1
aijwi

and then define the matrix of T relative to the bases B and B′, denoted
B′ [T ]B, by

B′ [T ]B = [aij] =


a11 a12 · · · a1n

a21 a22 · · · a2n
... ... . . . ...

am1 am2 · · · amn


Proposition 3.7. Let T : V → W be a linear transformation. Let
B = v1, . . . , vn be a basis for V and C = w1, . . . , wm.

Then for all v ∈ V

[T (v)]C =C [T ]B[v]B

Proof. Omitted. □

Definition 3.8. If A is an m-by-n matrix over a field k, define a linear
transformation TA : kn → km by the rule

TA(v) = Av
for all v ∈ kn.

Definition 3.9. Let V be a vector space. Define the identity function,
denoted IV (or just I if V is understood), by the rule

IV (v) = v for all v ∈ V.

Clearly, IV is a linear transformation.

Definition 3.10. Let n ≥ 1 be an integer and let k be a field.
For each i = 1, 2, . . . , n define the vector ei ∈ kn to be a column

vector with a 1 in the i-th row and 0 everywhere else.
Then B = e1, . . . , en is called the standard basis of kn.
Define the identity matrix to be the n-by-n matrix I such that

I = [e1 e2 · · · en]
In other words, I is the n-by-n matrix with 1’s along the diagonal and
0’s everywhere else.
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4. Invertibility of matrices, and determinants

Definition 4.1. Let T : V → W and S : U → V be two linear
transformations. Define T ◦ S : U → W by the rule

(T ◦ S)(u) = T (S(u)) for all u ∈ U.

Check that T ◦ S is a linear transformation.
Then check that the function

Φ : L(U, V ) → L(U, W )
defined by Φ(S) = TS is a linear transformation.

Similarly for Ψ(T ) = TS where
Ψ : L(V, W ) → L(U, W ).

Definition 4.2. Let T : V → W be a linear transformation. If there is
a linear transformation S : W → V such that ST = IV and TS = IW ,
then T is called invertible.

If T is invertible, then the inverse is unique, and we write S = T −1.
Furthermore, T is invertible if and only if T is 1-1 and onto.

Definition 4.3. Let n ≥ 1. Then there is a (unique) function det :
kn×n → k such that

a) det(v1, . . . , vj + αv, · · · , vn) =
det(v1, . . . , vj, . . . , vn) + α det(v1, . . . , v, . . . , vn)

b) det(. . . , vi, . . . , vj, . . .) = − det(. . . , vj, . . . , vi, . . .)
c) det(e1, e2, . . . , en) = 1

Proposition 4.4. Let A be an n-by-n matrix. Let Aij be the matrix
obtained by deleting the i-th row and j-th column of A. Then for any
1 ≤ j ≤ n

|A| =
n∑

i=1
(−1)i+jaij|Aij|

and for any 1 ≤ i ≤ n

|A| =
n∑

j=1
(−1)i+jaij|Aij|

Proposition 4.5. Let A be an n-by-n matrix. Then

|A| =
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · anσ(n)

Theorem 4.6. Let A be an n-by-n matrix. The following are equivalent
a) The rows of A are linearly independent/spanning/a basis for kn
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b) The columns of A are linearly independent/spanning/a basis for
kn

c) The determinant of A is non-zero
d) The equation Ax = 0 has a unique solution.
e) For each b ∈ kn, the equation Ax = b has a unique solution
f) For each b ∈ kn, the equation yT A = bT has a unique solution.
g) There exists an n-by-n matrix B such that AB = I
h) There exists an n-by-n matrix B such that BA = I
i) A is invertible.

Proof. □

5. Block matrices
Definition 5.1. Let m1, m2 and n1, n2 be positive integers. Let M =
m1 + m2 and N = n1 + n2. Let A11 be an m1-by-n1 matrix, let A12
be an m1-by-n2 matrix, A21 be an m2-by-n1 matrix, and A22 be an
m2-by-n2 matrix. Then the matrix(

A11 A12
A21 A22

)
is a 2-by-2 block matrix.

Proposition 5.2. We have

det
(

A B
0 C

)
= det(A) det(C)

Proof. If A is not invertible, then both sides of the equation are 0. If
A is invertible,

(
A−1 0

0 I

)(
A B
0 C

)
=
(

I A−1B
0 C

)

But it is clear that the determinant of
(

A
I

)
is det(A)−1 and the

determinant of
(

I A−1B
0 C

)
is det(C), So we conclude the required

factorization. □
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Definition 5.3. In general, let m1, m2, . . . , mk be positive integers and
n1, n2, . . . , nℓ be positive integers and let Aij be an mi-by-nj matrix for
each i = 1, 2, . . . , k and j = 1, 2, . . . , ℓ. The resulting

A =


A11 A12 · · · A1ℓ

A21 A22 · · · A2ℓ
... ... . . . ...

Ak1 Ak2 · · · Akℓ


is a k-by-ℓ block matrix (it is also a M -by-N matrix where M = m1 +
m2 + · · · + mk and N = n1 + n2 + · · · + nℓ.)
Try to think about under what conditions we can multiply two block
matrices.

Proposition 5.4. Suppose T : V → W is a linear transformation.
Suppose that W = W1 ⊕ W2 ⊕ · · · ⊕ Wm and V = V1 ⊕ V2 ⊕ · · · ⊕ Vn

Then there exists Ti : V → Wi such that for v ∈ V , T (v) = T1(v) +
T2(v) + · · · + Tm(v).

Furthermore, if B1, . . . , Bn are bases for V1, . . . , Vn respectively, and
C1, . . . , Cm are bases for W1, . . . , Wm respectively, and Aij =Ci

[Ti|Vj
]Bj

then the block matrix of T is:
A11 A12 · · · A1n

A21 A22 · · · A2n
... ... . . . ...

Am1 Am2 · · · Amn


Proof. Omitted. □

Definition 5.5. Let A1, . . . , Ar be matrices such that Ai is an ni-by-ni

matrix. Let N = n1 + n2 + · · · + nr and define the N -by-N matrix

A1 ⊕ A2 ⊕ · · · ⊕ Ar =


A1 0 · · · 0
0 A2 · · · 0
... ... . . . ...
0 0 · · · An



6. Polynomials
Definition 6.1. Let k be a field. A polynomial with coefficients in k
is a sum

f(x) = cnxn + cn−1x
n−1 + · · · + c1x + c0

where c0, c1, . . . , cn ∈ k.
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Theorem 6.2. The polynomial ring k[x] is an infinite dimensional
vector space over k with basis x0, x1, x2, . . . , xn, . . ..

Proof. The ring k[x] is constructed to have this property. Here is a
construction of k[x]:

a) Consider the set of sequences f : N → k (certainly a vector
space)

b) Let k[x] be the subset of those f such that fi ̸= 0 for finitely
many i

c) identify 1 ↔ (1, 0, 0, . . .), x ↔ (0, 1, 0, . . .) and so on
d) define the natural addition, and scalar multiplication (as well

as multiplication)
□

Definition 6.3. A monic polynomial is a polynomial of the form xn +
cn−1x

n−1 + · · · + c1x + c0 where n ≥ 0. In other words, the leading
coefficient of a monic polynomial is 1.
Definition 6.4. Let f(x) = cnxn + · · · + c1x + c0 with cn ̸= 0. Then
define deg f(x) = n.

Notice that deg fg = deg f + deg g.
Definition 6.5. Let a, b be polynomials, and suppose a ̸= 0. Then
there exist unique polynomials q, r such that

b = qa + r

such that deg r < deg a or r = 0.
The polynomial r is called the remainder and q is called the quotient.

Proof. By induction on N = deg a. If N = 0, then a is a non-zero
scalar. So b = (b/a) · a + 0 as required.

Otherwise write a = cxN + a′ with deg a′ ≤ N − 1 or a′ = 0. If
deg b < deg a or b = 0, then we may take q = 0 and r = b.

Suppose deg b ≥ deg a. Write b = dxN+j + lower order terms. Then
let b′ = b−(d/c)xj ·a. Notice that b′ = dxN+j+ lower order terms of b−
dxN+j − (d/c)xja′.

If a′ = 0, then let By induction we may find q′, r′ such that b′ =
q′a′ + r′ with deg r′ < deg a′ □

Definition 6.6. Let I be a subspace of k[x]. Then I is called an ideal
of k[x] if fI ⊂ I for all f ∈ k[x].

Theorem 6.7. Let I be an ideal of k[x]. Suppose I ̸= 0. Then there
exists a monic polynomial m(x) such that

I = {f(x) · m(x) | f(x) ∈ k[x]}.



10 DAVID TWEEDLE

Proof. Suppose I ̸= 0. Let f be a monic polynomial of smallest degree
such that f ∈ I. (here we are using the well-ordering principle, that
every non-empty subset of natural numbers has a least element).

We claim that every element of I is a multiple of f .
Let g ∈ I. Write g = qf + r with deg r < deg f , or r = 0. We have

that g ∈ I and qf ∈ I as well since f ∈ I.
So r = g − qf ∈ I. But then r = 0 (since otherwise r is an element

of I with smaller degree than f).
So g = q · f , as required. □

Definition 6.8. Let f(x), g(x) ∈ k[x]. Suppose f(x) and g(x) are not
both zero. Then the greatest common divisor of f(x) and g(x), denoted
gcd(f, g), is defined to be the monic polynomial h(x) with the largest
degree such that f(x) = q(x)h(x) and g(x) = r(x)h(x).

Theorem 6.9. Let f, g ∈ k[x] not both zero. Let h = gcd(f, g). Then
there exists polynomials a, b such that

h(x) = a(x)f(x) + b(x)g(x).

Proof. Let I = {a · f + b · g | a, b ∈ k[x]}. Check that I is an ideal
of k[x]. Let h(x) be the monic generator of I. Since h ∈ I, we have
h = af + bg for some a, b ∈ k[x].

We now will establish that h is the gcd of f, g.
Notice that f = 1 · f + 0 · g ∈ I so f = qh for some q. Similarly,

g(x) = r(x)h(x) for some r(x).
Suppose H is another polynomial which divides both f, g. Then H

divides also af + bg = h, which implies deg H ≤ deg h as required. □

Definition 6.10. The polynomial f(x) is called reducible if f(x) =
g(x)h(x) and g, h are both non-constant polynomials.

A non-constant polynomial f(x) is called irreducible if it is not re-
ducible.
Theorem 6.11. Let f(x) ∈ k[x] be a non-constant polynomial. Then
there are monic, irreducible polynomials p1, . . . , pn such that

f(x) = cp1 · · · pn

where c is the leading coefficient of f(x).

Proof. Sketch.
a) If f is irreducible we are done
b) else write f = gh each having degree strictly less than the

degree of f
c) find a factorization of g, h
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d) for uniqueness, prove that if p is irreducible and p divides gh
then p divides g or p divides h

□

Theorem 6.12. The only irreducible polynomials in C[x] are x−a for
a ∈ C.

Proof. C is algebraically closed. So if f(x) ∈ C[x] is a non-constant
polynomial, f has a root in C. So if deg f > 1 it is not reducible since
we can write f(x) = (x − a)g(x) where f(a) = 0.

The only irreducible monic polynomials are x − a where a ∈ C □

7. Algebra of linear transformations
Definition 7.1. Let V and W be vector spaces. The set of all linear
transformations from V to W is denoted by L(V, W ).

Theorem 7.2. The set of all linear transformations from V to W is
a vector space. The addition and scalar multiplication are defined as
follows:

(T + S)(v) = T (v) + S(v) for all v ∈ V

for all T, S ∈ L(V, W ) and

(cT )(v) = c · (T (v)) for all v ∈ V

Proof. Verify that T +S and cT are both linear transformations. Verify
that the zero function 0 : V → W defined by 0(v) = 0W for all v ∈ V
is a linear transformation.

Let F be the set of all functions from V → W . We claim that F
is a vector space under the above operations. Then L(V, W ) will be a
vector space by the subspace test.

THe zero vector of F is the zero function 0(v) = 0W for all v ∈ V .
The negative of g ∈ F is the function −g defined by (−g)(v) =

−(g(v)) for all v ∈ V .
The other six axioms can be checked (it is kind of tedious though).

If you have never tried it, then please try. □

Definition 7.3. Let V be a vector space. The set of all linear trans-
formations T : V → V is denoted L(V ).

We know this is a vector space over k. But in fact it is also known
to be something called a “k-algebra”. Other examples of k-algebras are
the polynomial ring k[x], and the n-by-n matrices over k.
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Definition 7.4. Suppose that A is a k-vector space. If, in addition,
there is a product

A × A → A
(A, B) 7→ A · B

such that
a) A · (βB + C) = βAB + AC for all A, B, C ∈ A and c ∈ k
b) (αA + B) · C = αAC + BC for all A, B, C ∈ A and c ∈ k
c) there exists 1 ∈ A such that 1 · A = A · 1 = A for all A ∈ A
d) A(BC) = (AB)C for all A, B, C ∈ A.

then we say that A is a k-algebra.

Theorem 7.5. The space L(V ) is a k-algebra.

Proof. Omitted. □

Theorem 7.6. Let V be a vector space with basis B, and W a vector
space with basis B′. Suppose n = dim(V ) and m = dim(W ). Then
define a map

Ψ : L(V, W ) → km×n

by the rule

Ψ(T ) =B′ [T ]B
for all T ∈ L(V, W ).

Then Ψ is an isomorphism of vector spaces.
Now, suppose that V = W and B = B′ so that

Ψ(T ) =B [T ]B
for all T : V → V , then

Ψ : L(V ) → kn×n

is an isomorphism of k-algebras (in particular, Ψ(c · IV ) = c · In and
Ψ(AB) = Ψ(A)Ψ(B)).

Proof. Try it. □

8. Inner Product Spaces

In this chapter especially, we will take k = C or k = R. Our proto-
type inner product for real vector spaces is the dot product ⟨v, u⟩ =∑n

i=1 viui = vT u. In general, we have the following definition.
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Definition 8.1. Let V be a real vector space. A symmetric inner
product on V is a function

⟨·, ·⟩ : V × V → R
such that

a) ⟨v, w⟩ = ⟨w, v⟩ for all v, w ∈ V .
b) ⟨av + w, u⟩ = a⟨v, u⟩ + ⟨w, u⟩ for all u, v, w ∈ V and a ∈ R
c) ⟨v, v⟩ ≥ 0 for all v ∈ V with equality if and only if v = 0.

If ⟨·, ·⟩ is a symmetric inner product on V then (V, ⟨·, ·⟩) is called a
real inner product space.

We can define a similar notion for complex vector spaces, but we have to
be careful with the symmetry. The prototypical complex inner product
space is Cn with inner product ⟨v, u⟩ = ∑n

i=1 viui = v∗u where v∗

means the conjugate transpose of v. In general, we have the following
definition.
Definition 8.2. Let V be a complex vector space. A hermitian inner
product on V is a function

⟨·, ·⟩ : V × V → C
such that

a) ⟨v, w⟩ = ⟨w, v⟩ for all v, w ∈ V .
b) ⟨av + w, u⟩ = a⟨v, u⟩ + ⟨w, u⟩ for all u, v, w ∈ V and a ∈ C
c) ⟨v, v⟩ ≥ 0 for all v ∈ V with equality if and only if v = 0.

If ⟨·, ·⟩ is an hermitian inner product on V then (V, ⟨·, ·⟩) is called a
complex inner product space.

Remark 8.3. From now on, whenever we say “inner product space”, un-
less otherwise noted, we mean “(real or complex) inner product space”.

Definition 8.4. Let u and v be two vectors in an inner product space.
We say that u and v are orthogonal if ⟨v, u⟩ = 0.

If S, T are non-empty subsets of V , then we say that S and T are
orthogonal if ⟨s, t⟩ = 0 for all s ∈ S and t ∈ T .

Proposition 8.5. Let V be a (real or complex) inner product space.
Then

a) ⟨0, v⟩ = 0 for all v ∈ V
b) if ⟨u, v⟩ = 0 for all v ∈ V then u = 0.

Proof. Omitted. □
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Definition 8.6. Let V be a (real or complex) inner product space. For
each v ∈ V , define the norm of v, denoted by ∥v∥, by

∥v∥ =
√

⟨v, v⟩

Proposition 8.7. Let V be an inner product space. Then
a) ∥vecv∥ ≥ 0 with equality if and only if v = 0
b) ∥cv∥ = |c|∥v∥
c) ∥v∥2 = ⟨v, v⟩
d) if ⟨u, v⟩ = 0 then ∥u + v∥2 = ∥u∥2 + ∥v∥2

e) ∥v + u∥2 + ∥v − u∥2 = 2∥v∥2 + 2∥u∥2

Proof. Omitted. □

Definition 8.8. Let u be a non-zero vector. Let v ∈ V . We define
the projection of v onto u to be the vector

x = ⟨v, u⟩
∥u∥2 u =

〈
v,

u
∥u∥

〉
u

∥u∥

Proposition 8.9. Let u be a non-zero vector. Let x = ⟨v,u⟩
∥u∥2 u be the

projection of v onto u. Then v = x + (v − x) is a decomposition of v
into two orthogonal vectors.

Proof. Omitted. □

Theorem 8.10. Let V be a (real or complex) inner product space.
Then

|⟨v, w⟩| ≤ ∥v∥∥w∥

with equality if and only if v, w are linearly dependent.

Proof. The theorem is true when either v = 0 or w = 0. Now, write
v = x + (v − x) as in Proposition 8.9. Then since x is orthogonal to
v − x, we have

∥v∥2 = ∥x∥2 + ∥v − x∥2 ≥ ∥x∥2

= ∥⟨v, w⟩
∥w∥2 w∥

= |⟨v, w⟩|2

∥w∥2

Now, if the above inequality is an equality then x = v so w is in the
span of v.

Conversely, if w = cv check that |⟨w, v⟩| = |c|∥v∥2 = ∥v∥∥w∥. □
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Corollary 8.11. We have
∥v + u∥ ≤ ∥v∥ + ∥u∥

Proof. Omitted. □

Definition 8.12. Let v1, . . . , vn be non-zero vectors. The list
v1, . . . , vn is called mutually orthogonal if

⟨vi, vj⟩ = 0 for all 1 ≤ i, j ≤ n with i ̸= j.

If the list v1, . . . , vn is mutually orthogonal, it is called orthonormal
if in addition ⟨vi, vi⟩ = 1 for all i = 1, 2, . . . , n.

If the list v1, . . . , vn of orthonormal vectors is such that
span(v1, . . . , vn) = V , then v1, . . . , vn is called an orthonormal basis
for V .
Proposition 8.13. Let v1, . . . , vn be a list of non-zero, orthonormal
vectors. Then if v = c1v1 + · · · + cnvn, we have

c1 = ⟨v1, v⟩, c2 = ⟨v2, v⟩, . . . , cn = ⟨vn, v⟩.
In particular, a list of orthonormal vectors is linearly independent.

Proof. Consider
⟨v1, v⟩ = ⟨v1, c1v1 + · · · + cnvn⟩

= c1⟨v1, v1⟩ + c2⟨v1, v2⟩ + · · · + cn⟨v1, vn⟩
= c1

since ⟨v1, v1⟩ = 1 and ⟨v1, v2⟩ = 0 and so on. The calculations for
c2, c3, . . . , cn are similar. □

Definition 8.14. Let u1, . . . , un be a list of orthonormal vectors and
U = span(u1, . . . , un). The orthogonal projection of a vector v onto U
is defined to be PU(v) where

PU(v) =
n∑

i=1
⟨ui, v⟩ui.

The orthogonal projection PU : V → V satisfies
P 2

U = PU

and
PU(V ) = U

Theorem 8.15. Let v1, . . . , vn be a basis for V . Then there orthornor-
mal vectors u1, . . . , un such that

a) span(v1, . . . , vi) = span(u1, . . . , ui) for each i = 1, 2, . . . , n
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b) Letting Ui = span(u1, . . . , ui), set yi+1 = vi+1 − PUi
(vi+1) and

then ui+1 = yi+1
∥yi+1∥

Proof. Omitted. □

Definition 8.16. A linear functional on V is a linear transformation
f : V → k where k is the field of scalars of V .

The set of all linear functionals on V is a vector space, called the
dual of V , denoted V ∨ or L(V, k).

If V is an inner product space and u is a fixed vector, then we can
construct a linear functional by defining f(v) = ⟨u, v⟩.

Theorem 8.17. Let V be a finite dimensional inner product space.
There is a 1-1 correspondence between linear functionals and vectors of
V .

Proof. For v ∈ V define fv : V → k by the rule

fv(w) = ⟨v, w⟩.

THe properties of inner product spaces tell us that fv is linear.
Furthermore, fv+cw = fv + cfw. So the map v 7→ fv is a linear

transformation

V → V ∨.

Let f : V → k be a linear transformation (in other words, f ∈ V ∨).
If f(w) = 0 for all w then f = f0.

Else there exists w ∈ V such that f(w) ̸= 0. By the rank-nullity
theorem (Theorem 1.8), if U is the nullspace of f , U has dimension
n − 1. Let u be a unit vector spanning the orthogonal complement of
U . Then calculate c = f(u) and notice that f = fcu. □

Remark 8.18. There is a Riesz Representation Theorem for complete
inner product spaces (a.k.a. Hilbert spaces).

Proposition 8.19. Let V, W be two inner product spaces with or-
thonormal bases B for V and B′ for W . Let T : V → W . Then
the matrix of T relative to B and B′ is given by the matrix with i, j-th
entry ⟨wi, T (vj)⟩.

Proof. To compute the matrix of T , we compute the coordinates of
T (vj) relative to B′, the i-th coordinate is given by

⟨wi, T (vj)⟩

by Proposition 8.13. □
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Definition 8.20. Let T : V → W be a linear transformation. A linear
transformation S : W → V is called an adjoint of T if

⟨w, T (v)⟩ = ⟨T ∗(w), v⟩
for all w ∈ W and v ∈ V .

The matrix of the adjoint is the conjugate transpose of the matrix.
Definition 8.21. Let T : V → V be a linear transformation and V
are inner product spaces. Then T is called an isometry if

∥T (v)∥ = ∥v∥
for all v ∈ V .
Proposition 8.22. Let T : V → V and S : V → V be isometries.
Then ST is an isometry. T is 1-1. If V is finite-dimensional then T
is invertible and T −1 is an isometry.

Proof. Notice

∥ST (v)∥ = ∥S(T (v))∥ = ∥T (v)∥ = ∥v∥

since both S and T are isometries.
If T (v) = 0 then 0 = ∥T (v)∥ = ∥v∥ so v = 0. So T is 1-1.
By the rank-nullity theorem, if T is 1-1 and V is finite-dimensional,

then T is invertible. Writing T −1w = v if and only if T (v) = w we
have

∥v∥ = ∥T (v)∥

so

∥T −1(w)∥ = ∥w∥

□

Proposition 8.23. Let T : V → V be a linear transformation. Then
⟨T (v), T (u)⟩ = ⟨v, u⟩ for all v, u ∈ V if and only if T is an isometry.

Proof. Suppose T is an isometry. There is a trick to proving that
⟨T (v), T (u)⟩ = ⟨v, u⟩. It is to expand

⟨T (v ± u), T (v ± u)⟩

and compare to ⟨v ± u, v ± u⟩.
Of course, if ⟨T (v), T (u)⟩ = ⟨v, u⟩ then T is an isometry because

you can put v = u. □

Proposition 8.24. Let T : V → V where V is finite-dimensional.
Then T is an isometry if and only if T ∗T = I.
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Proof. We have
⟨u, v⟩ = ⟨T (u), T (v)⟩ = ⟨u, T ∗T (v)⟩

Subtracting ⟨u, v⟩ from both sides:
0 = ⟨u, T ∗Tv − v⟩

for all v, u ∈ V . Therefore, T ∗Tv = v for all v ∈ V so T ∗T = I.
If T ∗T = I then

⟨v, u⟩ = ⟨v, T ∗Tu⟩ = ⟨Tv, Tu⟩
proving that T is unitary. □

Definition 8.25. Let U be an n-by-n matrix. Then U is called unitary
if U∗U = I.

By Proposition 8.24 and Proposition 8.19, a unitary matrix is the
matrix representation of an isometry relative to an orthonormal basis,
and it is also an isometry kn → kn.

A unitary matrix with real entries, is called an orthogonal matrix.
Real orthogonal matrices satisfy QT Q = I.
Proposition 8.26. Let U, V be n-by-n matrices and W and m-by-m
matrix. THen

a) If U, V are unitary then so is UV
b) If U and W is unitary then so is

U ⊕ W =
(

U 0
0 W

)
c) If U is unitary then | det(U)| = 1.

Proof. Omitted. □

Theorem 8.27. Let U be an n-by-n matrix. The following are equiv-
alent.

a) U is unitary
b) UT , U∗ are unitary
c) the columns of U form an orthonormal basis for kn (remember,

k = R or C depending on if we have a real or complex inner
product space)

d) the rows of U form an orthonormal basis

Proof. Omitted. □

Definition 8.28. A rank 1 projection matrix is a matrix P = uu∗

where u is a non-zero unit vector (in other words, ∥u∥ = 1.
We have that PU = P for U = span(u) in the terminology of Theo-

rem 8.15.
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Proposition 8.29. Let P be a rank 1 projection matrix, corresponding
to unit vector u.

a) the columnspace of P is span(u)
b) If ⟨v, u⟩ = 0 then PU(v) = 0
c) If v = cu then PU(v) = v.
d) P ∗

U = PU

e) P 2
U = PU

Proof. We have P (v) = uu∗v = u⟨u, v⟩ so the columnspace (in other
words, the range of P ) is equal to the span of u.

For part b), use the above formula again.
For part c) P (cu) = uu∗(cu) = cu
Compute P ∗

U = (uu∗)∗ = uu∗

Similarly, P 2
U = uu∗uu∗ = uu∗ since u∗u = 1. □

Definition 8.30. Let w ̸= 0. Let u = w
∥w∥ with rank 1 projection

Pu = uu∗ = ww∗

w∗w
The Householder matrix corresponding to w is defined to be

Uw = 1 − 2Pu

with corresponding Householder transformation
x 7→ x − 2⟨x, u⟩u

Theorem 8.31. Let U be a Householder matrix. Then U∗ = U = U−1,
If U is a real Householder matrix then UT = U = U−1.

Proof.
U∗U = (1 − 2Pu)2 = 1 − 4Pu + 4P 2

u = 1
So U is unitary, U∗ = U since P ∗

u = Pu, and so
U = U∗ = U−1.

If U is real then UT = U∗ so the second part follows. □

Theorem 8.32. Let x and y be vectors in Rn. Suppose 0 ̸= ∥x∥ = ∥y∥.
Let

σ =
{

1 if ⟨x, y⟩ ≤ 0
−1 if ⟨x, y⟩ > 0 ,

and let w = y − σx. Then σUw is real orthogonal and σUwx = y.

Proof. We just need to check that σUwx = y. Let w+ = x − y and
w− = x + y. Then notice that ⟨w+, w−⟩ = ∥x∥2 − ∥y∥2 = 0.
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So

Uw−w+ = w+

Uw−w− = −w−

Uw+w+ = −w+

Uw−w− = w−

Therefore, writing x = (1/2)w+ + (1/2)w−,

Uw−x = (1/2)w+ − (1/2)w− = y,

and similarly,

Uw+x = −y

Accounting for the definition of σ and w proves the theorem. □

Theorem 8.33. Let x, y ∈ Cn and suppose ∥x∥ = ∥y∥ ≠ 0. Let

σ =
{

1 if ⟨x, y⟩ = 0,

−⟨x, y⟩/|⟨x, y⟩| if ⟨x, y⟩ ≠ 0,
,

and let w = y − σx. Then σUw is unitary and σUwx = y.

Proof. Omitted (but similar to the real case). □

Theorem 8.34. Let A be an m-by-n matrix and suppose that m ≥ n.
There exists an m-by-m unitary matrix V and upper triangular n-by-n
matrix R whose diagonal entries are real and non-negative, such that

A = V

(
R
0

)
.

If V = (Q Q′) in which Q contains the first n columns of V , then Q
has orthonormal columns and A = QR.

If rank(A) = n, then the factors Q and R are unique and R has
positive diagonal entries.

Proof. Let a1 be the first column of A. Let c = ∥a1∥. Use a Householder
matrix U1 such that

U1A =
(

c ·
0 A′

)

where A′ is an m − 1-by-n − 1 matrix.
Roughly, we then apply induction. □
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9. Diagonalization and the Cayley-Hamilton Theorem
Definition 9.1. Let A be an n-by-n matrix. Then λ is called an
eigenvalue for A if there exists 0 ̸= v ∈ Cn such that

Av = λv.

If v ̸= 0 and Av = λv for some λ ∈ C, then v is called an eigenvector
for A.

The pair (λ, v) such that Av = λv and v ̸= 0 is called an eigenpair.

Theorem 9.2. Let A be an n-by-n matrix. Let λ ∈ C. The following
are equivalent

a) λ is an eigenvalue for A
b) λ is an eigenvalue for AT

c) Av = λv for some 0 ̸= v ∈ Cn

d) (A − λI)v = 0 has a non-trivial solution
e) A − λ is not invertible
f) AT − λ is not invertible

Proof. Omitted. □

Definition 9.3. Let A be an n-by-n matrix. Then pA(z) = det(zI −
A) = zn + cn−1z

n−1 + · · · + c1z + c0. Then pA is a monic polynomial of
degree n, called the characteristic polynomial.

Each coefficient of pA is a polynomial in the entries of A, cn−1 =
− tr(A) and c0 = (−1)n det A.

Proof. Omitted. □

Proposition 9.4. The characteristic polynomial of(
A B
0 C

)

is pApB.

Proof. Compute

det
(

A − zI B
0 C − zI

)
= det(A − zI) det(C − zI)

by Proposition 5.2. □
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Definition 9.5. Let k = C or R. We say a matrix A is diagonalizable
over k if there is an invertible matrix P and a diagonal matrix D (with
entries in k) such that

A = PDP −1

We say that a complex matrix A is unitarily diagonalizable if there
is a unitary matrix U and diagonal D such that

A = UDU∗

We say that a real matrix A is orthogonally diagonalizable if there is
an orthogonal matrix Q and diagonal matrix D with real entries such
that

A = QDQT .

Theorem 9.6. Let k = C or R.
A matrix is diagonalizable over k if and only if there is a basis of kn

consisting of eigenvectors for A.

Proof. Suppose A = PDP −1. Then AP = PD. The j-th column of
the left hand side is

Avj

where vj is the j-th column of P . The j-th column of the right hand
side is λjvj so each column of P is an eigenvector. Since P is invertible,
there is a basis of kn of eigenvectors.

Each argument may be reversed as well. □

Theorem 9.7. Let A be an n-by-n matrix. Then there is a monic
polynomial p ∈ C[x], with deg p ≤ n2 such that p(A) = 0.

Proof. The dimension of the vector space of n-by-n matrices is n2. So
1, A, A2, . . . , An2 are linearly independent which is enough to guarantee
the existence of such polynomial. □

Theorem 9.8. Let A be an n-by-n matrix. Then A has an eigenvalue
(in C).

Proof. Let p(x) be a monic polynomial with p(A) = 0. Since C is
algebraically closed, we can write

p(x) = (x − a1)(x − a2) · · · (x − an).

So

(A − a1)(A − a2) · · · (A − an) = 0.
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If A−a1 is not invertible then a1 is an eigenvalue. If A−a1 is invertible
then

(A − a2) · · · (A − an) = 0,

and we proceed similarly until we find that some aj is an eigenvalue of
A. □

Theorem 9.9. Let A be an n-by-n matrix, with eigenpair (λ, v) such
that ∥v∥ = 1. Then there is a unitary matrix

U = (v U ′)
and an upper triangular matrix T such that

A = UTU∗

and t11 = λ and t11, t22, . . . , tnn are the eigenvalues of A.
Furthermore, if A is a real matrix with real eigenvalues λ1, . . . , λn

and v has real entries, then there exists an orthogonal matrix Q = (vQ′)
such that A = QTQT (therefore, also T has real entries as well with
tii = λi for each i).

Proof. We will prove in the case that A is real. We proceed by induction
on n. So suppose that every real matrix with real eigenvalues and real
eigenvector x which is a unit vector, then we can write

A = QTQT

where the first column of Q is x and T is upper triangular.
Let A be a real matrix with real eigenvalues. Let x be an unit

eigenvector. Then Theorem 8.32, there is a unitary matrix U with first
column equal to x (U maps e1 to x). Write U = (x U ′). Then

AU = (Ax AU ′)
Since the columns of U are orthonormal U ′T x = 0,so

UT AU =
(

xT

U ′T

)
(λ1x AU ′) =

(
λ1 xT AU ′

λ1U
′T x U ′T AU ′

)
=
(

λ1
0 U ′T AU ′

)
.

By induction A′ = U ′T AU ′ can also be written as V TV T .
The eigenvalues of A are λ1, . . . , λn so the eigenvalues of A′ must be

λ2, . . . , λn

Now, let V1 = 1 ⊕ V and let U1 = V1U is a unitary matrix, and a
computation confirms that UT

1 AU1 is an upper-triangular matrix. □

Theorem 9.10. Let A be an n-by-n matrix and p(x) its characteristic
polynoimal. Then p(A) = 0.

Proof. Omitted. □
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Definition 9.11. Let A be an n-by-n matrix. Then A is called normal
if AA∗ = A∗A.
Theorem 9.12. Let A be an n-by-n matrix. The following are equiv-
alent.

a) A is normal (Definition 9.11)
b) A is unitarily diagonalizable (Definition 9.5)
c) Cn has an orthonormal basis consisting of eigenvectors of A

Now, let A be a real n-by-n matrix. The following are equivalent:
a) A is symmetric
b) A is real orthogonally diagonalizable (there exists an orthogonal

matrix Q such that A = QDQT for some diagonal D)
c) Rn has an orthonormal basis consisting of eigenvectors of A

Proof. Omitted. □

10. Canonical forms
Definition 10.1. Let T : V → V be a linear operator. Let U be a
subspace of V . We say that U is T -invariant if T (U) ⊂ U .

If U is T -invariant, then the restriction of T to U , T |U , is a linear
operator on U .

Proposition 10.2. Suppose T : V → V is a linear transformation.
Suppose V = U ⊕ W and U is T -invariant. Let B = u1, . . . , uk be a
basis for U and B′ = w1, . . . , wℓ be a basis for W . Then B ∪ B′ is a
basis for V and the matrix of T relative to B ∪B′ (see Proposition 5.4)(

A11 A12
0 A22

)

If W is also T -invariant, then the matrix of T is of the form(
A11 0
0 A22

)

Proof. Let C = B ∪ B′. The columns of the matrix of T correspond to

[T (u1)]C , [T (u2)]C , . . . , [T (uk)]C , [T (w1]C , . . . , [T (wℓ)]C .

But for v ∈ V , Proposition 3.2 or Proposition 5.4, we have that v =
u + w and

[v]C =
(

[u]B
[w]B′

)
.
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Now, it remains to note that for uj ∈ B, T (ui) ∈ U , so T (uj) = u + 0
according to Theorem 2.11. This implies that the matrix of T is of the
form (

A11 A12
A21 A22

)
.

If W is also T -invariant, a similar argument applies. In this case,
our notation Definition 5.5 applies and we write the matrix of T as

A11 ⊕ A22

where A11 is the matrix of T |U : U → U and A22 is the matrix of
T |W : W → W . □

Proposition 10.3. Let p(x) ∈ k[x] be a polynomial. Let T : V → V
be a linear operator. Let U be a T -invariant subspace. Then p(T )(U)
is T -invariant. Also (p(T ))−1(U) = {v ∈ V | p(T )(v) ∈ U} is T -
invariant.

In particular, ker(p(T )) and p(T )(V ) are T -invariant subspaces.

Proof. Omitted. □

Proposition 10.4. Let W = ker(T − λ) and let U ⊆ W . Then U is a
T -invariant subspace.

Proof. Omitted. □

Lemma 10.5. Suppose T : V → V is a linear operator. Suppose
f(T ) = 0. Suppose f(x) = g(x)h(x) and gcd(g, h) = 1. Then

V = ker(g(T )) ⊕ ker(h(T )).

Proof. Since gcd(g, h) = 1 write 1 = ag + bh for some polynomials
a, b ∈ k[x] (Theorem 6.9). Let v ∈ V . Then write

v = 1v = a(T )g(T )v + b(T )h(T )v
and let v1 = b(T )h(T )v and let v2 = a(T )g(T )v. Notice that v1 ∈
ker(g(T )) and v2 ∈ ker(h(T )). So V = ker(g(T )) + ker(h(T )) but we
have to show that the sum is a direct sum (Definition 2.1)

So suppose v ∈ ker(g(T )) ∩ ker(h(T )). Then write
v = a(T )g(T )v + b(T )h(T )v = 0 + 0 = 0

since g(T )v = h(T )v = 0.
So the sum is a direct sum as required. □

Theorem 10.6. Let pT (z) = (z − λ1)m1 · · · (z − λk)mk be the factoriza-
tion of pT over the complex numbers. Then

V = ker(T − λ1)m1 ⊕ ker(T − λ2)m2 ⊕ · · · ⊕ ker(T − λk)mk
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Proof. Let f1(z) = (z − λ2)m2 · · · (z − λk)mk and let V1 = ker(f1(T )).
Then gcd((x − λ1)m1 , (x − λ2)m2 , . . . , (x − λk)mk) = 1. Therefore, by
Lemma 10.5,

V = ker(T − λ1)m1 ⊕ ker(f1(T )).
Now, let T1 : V1 → V1 be the restriction of T to V1.

To apply induction we need for f1(z) to be the characteristic poly-
nomial of T1. We have V1 = (T − λ1)m1(V ). The matrix of T is(

A 0
0 B

)
Now, A is an m1-by-m1 matrix whose only eigenvalue is λ1. So the
characteristic polynomial of A is (x − λ1)m1 . The characteristic poly-
nomial of A ⊕ B is the product of the characteristic polynomials of
A and B. So the characteristic polynomial of B must be f1(z). By
induction,

V1 = ker(T − λ2)m2 ⊕ · · · ⊕ ker(T − λk)mk

and so
V = ker(T − λ1)m1 ⊕ V1 = ker(T − λ1)m1 ⊕ · · · ⊕ ker(T − λk)mk

add reference for characteristic polynomial of direct sum of matri-
ces

□

Definition 10.7. A matrix A is called nilpotent if An = 0 for some
n ≥ 1.
Proposition 10.8. Let A be a square matrix. Then Spec A = {λ} if
and only if A − λ is nilpotent.
Proof. Let B = A − λ.

If Bn = 0 and Bv = λv then 0 = Bnv = λnv so λ = 0.
On the other hand, if Spec B = {0}, then the characteristic polyno-

mial of B must be xn and then apply the Cayley-Hamilton Theorem
(Theorem 9.10). □

Theorem 10.9. Let A be an n-by-n matrix, with characteristic polyno-
mial p(x) and minimal polynomial m(x). The following are equivalent.

a) A is nilpotent (Ak = 0 for some k ≥ 1)
b) p(x) = xn

c) m(x) = xj for some 1 ≤ j ≤ n
d) A has no non-zero eigenvalues
e) An = 0
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Proof. Omitted. □

Definition 10.10. Let λ ∈ C and k ≥ 1. A Jordan block of size k
with eigenvalue λ is

Jk(λ) =


λ 1

λ 1
. . . . . .

λ 1
1


We will now work with nilpotent operators for a little bit.
Definition 10.11. Let T : V → V . Let v ∈ V and suppose
that T k(v) = 0 and T k−1(v) ̸= 0. Then the subspace U =
span(v, T (v), . . . , T m−1(v) is called a cyclic subspace of V . The vector
v is called a cyclic vector. We will write U = C(v) to mean that U is
a cyclic subspace with cyclic vector v.

Proposition 10.12. Suppose U = C(v). Then v, T (v), . . . , T m−1(v)
is a basis for U where T m(v) = 0 and T m−1(v) ̸= 0.
Proof. Let B = v, T (v), . . . , T m−1(v). By definition of cyclic subspace,
B spans U . Suppose for some 0 ≤ j ≤ m − 1, we have cj ̸= 0 and

cjT
jv + cj+1T

j+1(v) + · · · + cm−1T
m−1(v) = 0.

Then apply T m−j−1 to the equation, and using that T mv = 0, we have
cjT

m−1v = 0
and since T m−1v ̸= 0, we conclude that cj = 0. This is a contradiction.
This argument tells us that if

c0 + c1Tv + · · · + cm−1T
m−1v = 0

then in the above expression c0 = 0, c1 = 0, and so on. So B is linearly
indendent and so a basis for U . □

Proposition 10.13. Suppose T : V → V is nilpotent. Then V is the
direct sum of cyclic subspaces.
Proof. By induction on dim V (dim V = 1 is clear).

Suppose that the theorem is true for all W with dim W < dim V .
Let W = T (V ). THen dim W < dim V by the rank-nullity theorem

(since T is nilpotent, its nullspace is non-trivial).
So write W = C(w1) ⊕ · · · ⊕ C(wn).
Then write T (vi) = wi. Let W ′ = C(v1) + · · · + C(vn). We claim

that W ′ is the direct sum
W ′ = C(v1) ⊕ · · · ⊕ C(vn).
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Consider
p1(T )v1 + · · · + pn(T )vn = 0

We must show that pi(T )vi = 0 for all 1 ≤ i ≤ n.
First, suppose that pi(0) ̸= 0 for some i. Then gcd(pi, xmi) = 1, so

there exists a, b ∈ k[x] such that
api + bxmi = 1

Now
vi = (a(T )pi(T ) + b(T )T mi)vi = a(T )pi(T )vi

in particular
vi =

∑
j ̸=i

a(T )pj(T )vj

proving that vi = 0 which is a contradiction since then wi = T (vi) = 0
so the sum for W = T (V ) is not direct. Therefore, pi(0) = 0 for all i.
Therefore pi(x) = xqi(x) for some polynomials qi. In particular, each
vector pi(T )vi = qi(T )wi and the sum for W is a direct sum proving
that qi(T )wi = 0, so the sum for W ′ is a direct sum.

Finally, W ′ +ker(T ) = V . So find U ⊂ ker(T ) such that W ′ ⊕U = V
and finish the proof by noting that any subspace of ker(T ) is a direct
sum of cyclic subspaces. □

Definition 10.14. A Jordan matrix is defined to be a direct sum of
Jordan blocks:

J = Jn1(λ1) ⊕ Jn2(λ2) ⊕ · · · ⊕ Jnk
(λk)

Definition 10.15. A nilpotent Jordan block is a matrix

Jn = Jn(0) =


0 1 · · · 0
0 0 . . . 0
0 0 · · · 1
0 0 · · · 0


Definition 10.16. A nilpotent Jordan matrix is a direct sum of nilpo-
tent Jordan blocks

Jn1 ⊕ Jn2 ⊕ · · · ⊕ Jnk
=


Jn1 0 · · · 0
0 Jn2 · · · 0
... ... . . . ...
0 0 · · · Jnk


Lemma 10.17. Let Jn = (0 e1 · · · en−1). Let 1 ≤ p ≤ n − 1. Then
Jp

n = (0 · · · e1 e2 · · · en−p). And Jn
n = 0.



LINEAR ALGEBRA 2 29

In particular, rank(Jp
n) = n − p for all p ≤ n.

In particular, rank(Jp
n) − rank(Jp−1

n ) = 1 for p ≤ n and 0 for p > n.

Proof. Notice that Jnei+1 = ei for i ≤ n − 1. □

Theorem 10.18. Let V be a finite-dimensional vector space. Let T :
V → V be a linear operator. Suppose that pT (z) = (z − λ1)m1 · · · (z −
λn)mn is the characteristic polynomial of T . Then the Jordan normal
form of T exists and is unique.

Proof. Apply Theorem 10.6. Then apply Proposition 10.13. That
proves existence.

Uniqueness is an exercise. □

11. Singular value decomposition and applications
Definition 11.1. Let P be a symmetric (if P is real) or Hermitian
(if P has complex entries) n-by-n matrix. Let the eigenvalues of P be
λ1, λ2, . . . , λn. Then P is called positive semi-definite if λ1 ≥ 0, λ2 ≥ 0,
..., λn ≥ 0.

The symmetric matrix P is called positive definite if all the eigen-
values are positive.

Proposition 11.2. Let P be a (symmetric or Hermitian) n-by-n ma-
trix. The following are equivalent

a) P is positive semi-definite
b) x∗Px ≥ 0 for all x ∈ Cn (if P is Hermitian)or for all x ∈ Rn

if P is symmetric.

Proof. Omitted. □
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Definition 11.3. Let P be a positive semi-definite matrix. Then there
exists a unitary matrix U such that

P = UDU∗

and

D =


λ1

λ2
. . .

λn


where λ1, . . . , λn are all non-negative. Define the square root of P ,
denoted P 1/2, by

P 1/2 = U


√

λ1 √
λ2

. . . √
λn

U∗

Definition 11.4. Let A be an m-by-n complex matrix. Let r =
rank(A). Let q = min(m, n). Then A∗A is a positive semi-definite
n-by-n matrix, with r positive eigenvalues. Then let the positive eigen-
values of (A∗A)1/2 be σ1 ≥ σ2 ≥ · · · ≥ σr and define

σr+1 = σr+2 = · · · = σq = 0.

Then the singular values of A are defined to be
σ1 ≥ σ2 ≥ · · · ≥ σr > 0 = σr+1 = · · · = σq.

Theorem 11.5. Let A be an m-by-n matrix, let r = rank(A), let
q = min(m, n) and let

σ1 ≥ σ2 ≥ · · · ≥ σq

be the singular values of A and let c ∈ C. Then
a) σ2

1, . . . , σ2
r are the positive eigenvalues of A∗A and AA∗

b) ∑q
i=1 = σ2

i = tr A∗A = tr AA∗

c) A, A∗, AT , and A have the same singular values
d) The singular values of cA are |c|σ1, |c|σ2, . . . , |c|σq.

Proof. It is clear that the positive eigenvalues of A∗A are the squares of
the positive eigenvalues of (A∗A)1/2. The non-zero eigenvalues of AA∗

and A∗A are the same.

tr A∗A =
r∑

i=1
σr

1



LINEAR ALGEBRA 2 31

and tr A∗A = tr AA∗ by cyclicity of trace.
The non-zero eigenvalues of A∗A and AA∗ are the same. But

A∗A = AT A, AA∗ = AAT

which means A, A, AT , A∗ have the same singular values. □

Theorem 11.6. Let A be a non-zero m-by-n matrix Let r = rank(A).
Let σ1 ≥ σ2 ≥ · · · σr > 0 be the non-zero singular values of A. Define

Σr =


σ1

σ2
. . .

σr


Then there is an n-by-n unitary matrix V and m-by-m unitary matrix
W such that

A = V ΣW ∗

in which

Σ =
(

Σr 0r×n−r

0m−r×r 0m−r×n−r

)
is the same size as A.

Proof. Suppose m ≥ n. Write A∗A = WDW ∗ with unitary W . Then
D1/2 = Σr ⊕ 0n−r Let

E =



σ1
σ2

. . .
σr

1
. . .

1


so that D1/2E−1 = Ir ⊕ 0n−r.

Now, let B = AWE−1 and consider
B∗B = (AWE−1)∗(AWE−1)

= (E−1)∗W ∗A∗AWE−1

= E−1W ∗WDW ∗WE−1

= E−1D1/2D1/2E−1

= Ir ⊕ 0n−r
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Write B = (Vr B′) so that Vr is the first r columns of B. NOtice

B∗B =
(

V ∗
r Vr V ∗

r B′

B′∗Vr (B′)∗B′

)
= Ir ⊕ 0n−r.

So the columns of Vr are orthonormal, so they may be extended to
an orthonormal basis of Cm, so let V = (Vr V ′) be a unitary matrix.
On the other hand, (B′)∗B′ = 0 means that each columns of B′ is zero,
so B′ is zero.

Now, let us compare AW and V Σ.

V σ = (Vr V ′)
(

Σr 0r×n−r

0m−r×r 0m−r×n−r

)
= (VrΣr 0m×n−r).

AW = BE = (Vr 0)(Σr ⊕ In−r) = (VrΣr 0m×n−r

as required. □

12. Quadric surfaces

Definition 12.1. A quadric surface is a surface in R3 with an equation
of the form

ax2 + bxy + cxz + dy2 + eyz + fz2 + gx + hy + iz + l = 0,

where a, b, c, d, e, f, g, h, i ∈ R and at least one of a, b, c, d, e, f is non-
zero. (A quadric surface is just a surface defined by a degree 2 equation
in x, y, z).
Definition 12.2. A quadratic form (for our purposes) is a function
q : Rn → R such that q(x) = xT Ax for a symmetric matrix A.
Definition 12.3. Let S = {ax2 + bxy + · · · + iz + l = 0} be a quadric
surface. Define a quadratic form qS(x, y, z, w) = ax2 + bxy + cxz +
dy2 + eyz + fz2 + gxw + hyw + izw + lw2 with associated matrix

AS =


a b/2 c/2 g/2

b/2 d e/2 h/2
c/2 e/2 f i/2
g/2 h/2 i/2 l


Definition 12.4. Let S be a quadric surface, with quadratic form
qS and matrix AS. Then AS = QDQT since AS is symmetric. Let
λ1, λ2, λ3, λ4 be the eigenvalues of AS.

Then if one or more λi = 0 then S is called degenerate.
The goal is now to classify all the quadric surfaces. We will do this in
class if we have time.
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