LINEAR ALGEBRA 2

DAVID TWEEDLE

These notes will serve as reference for Math 3273. The notes follow Axl15 and GH17. Thank you for reading.

1. Row, Column, nullspace, Left-nullspace and RANK-NULLITY THEOREM

Let A be an n-by- m matrix with entries in a field k. You can think of k being either \mathbb{R} or \mathbb{C}. A row vector is $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$. A column vector is

$$
\mathbf{v}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

and the transpose of \mathbf{v} is the row vector $\mathbf{v}^{T}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. The set of all column vectors consisting of n entries in the field k will be denoted k^{n}.
Definition 1.1. The nullspace of A, denoted $\operatorname{null}(A)$, is the set of all column vectors $\mathbf{v} \in k^{n}$ such that $A \mathbf{v}=\mathbf{0}$.
Definition 1.2. The rowspace of A, denoted $\operatorname{row}(A)$, is defined to be the set of all linear combinations of the rows of A.

Definition 1.3. The columnspace of A, denoted $\operatorname{col}(A)$, is defined to be the set of all linear combinations of the columns of A.
Definition 1.4. The left-nullspace of A, denoted $\operatorname{null}\left(A^{T}\right)$, is defined to be the set of all vectors \mathbf{y} such that $\mathbf{y}^{T} A=\mathbf{0}^{T}$.

Proposition 1.5. Suppose A and B are both m-by-n matrices and ϵ is an elementary row operation. Suppose also that $A \xrightarrow{\epsilon} B$ and $I \xrightarrow{\epsilon} E$. Then $B=E A$.

Theorem 1.6. Let A be an $m-b y-n$ matrix with entries in the field k. Then there exists an invertible matrix P and a reduced row-echelon matrix R such that $A=P R$.

Date: September 5, 2021.

Definition 1.7. The nullity of a matrix A, denoted nullity (A), is defined to be the dimension of the nullspace of A.

The rank of A, denoted $\operatorname{rank}(A)$, is defined to be the dimension of the row space of A.

Theorem 1.8. Let A be an m-by-n matrix. Then

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n
$$

2. Direct sums, Basis, dimension

Definition 2.1. Let U and W be subspaces of a vector space V. Suppose
a) $U+W=V$
b) $U \cap W=0$.

Then we say that V is the direct sum of U and W and write $V=U \oplus W$.
Definition 2.2. Let $S \subseteq V$. A linear combination of vectors from S is a vector \mathbf{v} such that

$$
\mathbf{v}=\sum_{i=1}^{n} c_{i} \mathbf{v}_{i}
$$

where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in S$ and $c_{1}, c_{2}, \ldots, c_{n} \in k$.
The span of S, denoted $\operatorname{span}(S)$, is defined to be the set of all linear combinations of vectors from S.
Definition 2.3. Suppose that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a list of vectors from V. Consider the equation

$$
\sum_{i=1}^{n} c_{i} \mathbf{v}_{i}=\mathbf{0}
$$

The trivial solution is $c_{1}=c_{2}=\cdots=c_{n}=0$.
The list of vectors is called linearly independent if the only solution to the equation is the trivial solution. Otherwise, the list is called linearly dependent.
Definition 2.4. Let S be a set of vectors. Then S is called linearly dependent if for any positive integer $n \geq 1$, any list of n distinct vectors from S is linearly independent.

Otherwise, S is called linearly dependent.
Definition 2.5. If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is a list of linearly independent and spanning vectors for V then we say that the list $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a basis for V.

The notion of an infinite basis is as follows: S is a basis for V if $\operatorname{span}(S)=V$ and S is linearly independent.

Theorem 2.6. Suppose $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a basis for V. If $\sum_{i=1}^{n} c_{i} \mathbf{v}_{i}=$ $\sum_{i=1}^{n} d_{i} \mathbf{v}_{i}$ then $c_{i}=d_{i}$ for all $i=1,2, \ldots, n$.

Proposition 2.7. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be a list of vectors in V. Suppose $\mathbf{v}=\sum_{i=1}^{n} c_{i} \mathbf{v}_{i}$ with $c_{j} \neq 0$ for some $1 \leq j \leq n$.
a) Replacing \mathbf{v}_{j} with \mathbf{v} does not change the span of the list.
b) If the list $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is linearly independent, then it is still linearly independent after replacing \mathbf{v}_{j} with \mathbf{v}
c) If $\mathbf{v} \notin \operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{u}\right)$ for some $u<n$, then there exists $j>u$ with $c_{j} \neq 0$
d) If $\mathbf{v} \notin \operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}, \mathbf{v}$ is linearly independent.

Theorem 2.8. Let $W \subset V$ be a subspace of V. Suppose V has a finite basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. Suppose $\mathbf{w}_{1}, \ldots, \mathbf{w}_{k} \in W$ are linearly independent. Then there exists $\mathbf{w}_{k+1}, \ldots, \mathbf{w}_{u} \in W$ such that $\mathbf{w}_{1}, \ldots, \mathbf{w}_{u}$ is a basis for W and $u \leq n$.

Definition 2.9. Let V be a vector space with basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. Then the dimension of V, denoted $\operatorname{dim}(V)$, is defined to be n.

If $V=0$ then we write $\operatorname{dim}(V)=0$ (or check that the empty list is linearly independent by definition, and spanning by convention).

If V has no finite basis (equivalently, V contains an infinite linearly independent set), then write $\operatorname{dim}(V)=\infty$.

Theorem 2.10. Let V be a vector space and $U \subset V$ a subspace. Then there is a subspace W such that $V=W \oplus U$.

Theorem 2.11. Let V be a vector space with subspaces V_{1}, \ldots, V_{n}. Then the following are equivalent
a) $V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n}$
b) every $\mathbf{v} \in V$ can be written uniquely as $\mathbf{v}=\mathbf{v}_{1}+\cdots+\mathbf{v}_{n}$ where $\mathbf{v}_{i} \in V_{i}$

Proof. Omitted.

3. Linear transformations and matrices

Definition 3.1. Let V be a vector space with basis $B=\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. Let $\mathbf{v} \in V$. Then there are unique scalars $c_{1}, c_{2}, \ldots, c_{n}$ such that

$$
\mathbf{v}=\sum_{i=1}^{n} c_{i} \mathbf{v}_{i} .
$$

We define the coordinate vector of \mathbf{v} relative to B, denoted by $[\mathbf{v}]_{B}$, to be $[\mathbf{v}]_{B}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)^{T}$.

Proposition 3.2. Let V be a vector space and suppose that V can be written as the direct sum of subspaces

$$
V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n}
$$

Suppose that $B_{1}=\mathbf{v}_{1}, \ldots, \mathbf{v}_{r_{1}}$ is a basis for $V_{1}, B_{2}=\mathbf{v}_{r_{1}+1}, \ldots, \mathbf{v}_{r_{1}+r_{2}}$ is a basis for $V_{2}, \ldots, B_{n}=\mathbf{v}_{r_{1}+\cdots+r_{n-1}+1}, \ldots, \mathbf{v}_{r_{1}+\cdots+r_{n}}$ is a basis for V_{n}. Then $B_{1} \cup B_{2} \cup \cdots \cup B_{n}$ is a basis for V, and for all $\mathbf{v} \in V$ the coordinate vector of \mathbf{v} may be written as

$$
\binom{\frac{\mathbf{x}_{1}}{\mathbf{x}_{2}}}{\frac{\vdots}{\mathbf{x}_{n}}}
$$

where $\mathbf{v}=\mathbf{v}_{1}+\cdots+\mathbf{v}_{n}$ is the decomposition from Theorem 2.11 where $\mathbf{v}_{i} \in V_{i}$ and $\mathbf{x}_{i}=\left[\mathbf{v}_{i}\right]_{B_{i}} .{ }^{.}$

Proof. Omitted.
Proposition 3.3. Let $B=\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be a basis of a vector space V. Then
a) for all $\mathbf{v}, \mathbf{w} \in V$,

$$
[\mathbf{v}+\mathbf{w}]_{B}=[\mathbf{v}]_{B}+[\mathbf{w}]_{B}
$$

b) for all $\mathbf{v} \in V$ and $c \in k$

$$
[c \mathbf{v}]_{B}=c[\mathbf{v}]_{B}
$$

Proof. Omitted.
Definition 3.4. Let V and W be vector spaces (always over a common field k). Let $T: V \rightarrow W$ be a function such that
a) $T\left(\mathbf{v}+\mathbf{v}^{\prime}\right)=T(\mathbf{v})+T\left(\mathbf{v}^{\prime}\right)$ for all $\mathbf{v}, \mathbf{v}^{\prime} \in V$
b) $T(c \mathbf{v})=c T(\mathbf{v})$ for all $c \in k, \mathbf{v} \in V$.

Then T is called a linear transformation from V to W. If $V=W$ then $T: V \rightarrow V$ is called a linear operator on V.
Definition 3.5. Let k be a field. An m-by- n matrix over k is an array of $m n$ elements of k arranged into m rows and n columns:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

The set of all m-by- n matrices over k is denoted by $k^{m \times n}$.

Definition 3.6. Let $T: V \rightarrow W$ be a linear transformation. Let $B=\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be a basis for V and $B^{\prime}=\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$ be a basis for W. For each $j=1,2, \ldots, n$ write

$$
T\left(\mathbf{v}_{j}\right)=\sum_{i=1}^{m} a_{i j} \mathbf{w}_{i}
$$

and then define the matrix of T relative to the bases B and B^{\prime}, denoted ${ }_{B^{\prime}}[T]_{B}$, by

$$
{ }_{B^{\prime}}[T]_{B}=\left[a_{i j}\right]=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

Proposition 3.7. Let $T: V \rightarrow W$ be a linear transformation. Let $B=\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be a basis for V and $C=\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$.

Then for all $\mathbf{v} \in V$

$$
[T(\mathbf{v})]_{C}==_{C}[T]_{B}[\mathbf{v}]_{B}
$$

Proof. Omitted.

Definition 3.8. If A is an m-by- n matrix over a field k, define a linear transformation $T_{A}: k^{n} \rightarrow k^{m}$ by the rule

$$
T_{A}(\mathbf{v})=A \mathbf{v}
$$

for all $\mathbf{v} \in k^{n}$.
Definition 3.9. Let V be a vector space. Define the identity function, denoted I_{V} (or just I if V is understood), by the rule

$$
I_{V}(\mathbf{v})=\mathbf{v} \text { for all } \mathbf{v} \in V
$$

Clearly, I_{V} is a linear transformation.
Definition 3.10. Let $n \geq 1$ be an integer and let k be a field.
For each $i=1,2, \ldots, n$ define the vector $\mathbf{e}_{i} \in k^{n}$ to be a column vector with a 1 in the i-th row and 0 everywhere else.

Then $B=\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ is called the standard basis of k^{n}.
Define the identity matrix to be the n-by- n matrix I such that

$$
I=\left[\begin{array}{llll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{n}
\end{array}\right]
$$

In other words, I is the n-by- n matrix with 1 's along the diagonal and 0 's everywhere else.

4. INVERTIBILITY OF MATRICES, AND DETERMINANTS

Definition 4.1. Let $T: V \rightarrow W$ and $S: U \rightarrow V$ be two linear transformations. Define $T \circ S: U \rightarrow W$ by the rule

$$
(T \circ S)(\mathbf{u})=T(S(\mathbf{u})) \text { for all } \mathbf{u} \in U
$$

Check that $T \circ S$ is a linear transformation.
Then check that the function

$$
\Phi: \mathcal{L}(U, V) \rightarrow \mathcal{L}(U, W)
$$

defined by $\Phi(S)=T S$ is a linear transformation.
Similarly for $\Psi(T)=T S$ where

$$
\Psi: \mathcal{L}(V, W) \rightarrow \mathcal{L}(U, W)
$$

Definition 4.2. Let $T: V \rightarrow W$ be a linear transformation. If there is a linear transformation $S: W \rightarrow V$ such that $S T=I_{V}$ and $T S=I_{W}$, then T is called invertible.

If T is invertible, then the inverse is unique, and we write $S=T^{-1}$.
Furthermore, T is invertible if and only if T is $1-1$ and onto.
Definition 4.3. Let $n \geq 1$. Then there is a (unique) function det : $k^{n \times n} \rightarrow k$ such that
a) $\operatorname{det}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{j}+\alpha \mathbf{v}, \cdots, \mathbf{v}_{n}\right)=$
$\operatorname{det}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{j}, \ldots, \mathbf{v}_{n}\right)+\alpha \operatorname{det}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}, \ldots, \mathbf{v}_{n}\right)$
b) $\operatorname{det}\left(\ldots, \mathbf{v}_{i}, \ldots, \mathbf{v}_{j}, \ldots\right)=-\operatorname{det}\left(\ldots, \mathbf{v}_{j}, \ldots, \mathbf{v}_{i}, \ldots\right)$
c) $\operatorname{det}\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right)=1$

Proposition 4.4. Let A be an n-by-n matrix. Let $A_{i j}$ be the matrix obtained by deleting the i-th row and j-th column of A. Then for any $1 \leq j \leq n$

$$
|A|=\sum_{i=1}^{n}(-1)^{i+j} a_{i j}\left|A_{i j}\right|
$$

and for any $1 \leq i \leq n$

$$
|A|=\sum_{j=1}^{n}(-1)^{i+j} a_{i j}\left|A_{i j}\right|
$$

Proposition 4.5. Let A be an $n-b y-n$ matrix. Then

$$
|A|=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2)} \cdots a_{n \sigma(n)}
$$

Theorem 4.6. Let A be an n-by-n matrix. The following are equivalent
a) The rows of A are linearly independent/spanning/a basis for k^{n}
b) The columns of A are linearly independent/spanning/a basis for k^{n}
c) The determinant of A is non-zero
d) The equation $A \mathbf{x}=\mathbf{0}$ has a unique solution.
e) For each $\mathbf{b} \in k^{n}$, the equation $A \mathbf{x}=\mathbf{b}$ has a unique solution
f) For each $\mathbf{b} \in k^{n}$, the equation $\mathbf{y}^{T} A=\mathbf{b}^{T}$ has a unique solution.
g) There exists an n-by-n matrix B such that $A B=I$
h) There exists an n-by-n matrix B such that $B A=I$
i) A is invertible.

Proof.

5. Block matrices

Definition 5.1. Let m_{1}, m_{2} and n_{1}, n_{2} be positive integers. Let $M=$ $m_{1}+m_{2}$ and $N=n_{1}+n_{2}$. Let A_{11} be an m_{1}-by- n_{1} matrix, let A_{12} be an m_{1}-by- n_{2} matrix, A_{21} be an m_{2}-by- n_{1} matrix, and A_{22} be an m_{2}-by- n_{2} matrix. Then the matrix

$$
\left(\begin{array}{l|l}
A_{11} & A_{12} \\
\hline A_{21} & A_{22}
\end{array}\right)
$$

is a 2 -by- 2 block matrix.
Proposition 5.2. We have

$$
\operatorname{det}\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right)=\operatorname{det}(A) \operatorname{det}(C)
$$

Proof. If A is not invertible, then both sides of the equation are 0 . If A is invertible,

$$
\left(\begin{array}{cc}
A^{-1} & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right)=\left(\begin{array}{cc}
I & A^{-1} B \\
0 & C
\end{array}\right)
$$

But it is clear that the determinant of $\left(\begin{array}{ll}A & \\ & I\end{array}\right)$ is $\operatorname{det}(A)^{-1}$ and the determinant of $\left(\begin{array}{cc}I & A^{-1} B \\ 0 & C\end{array}\right)$ is $\operatorname{det}(C)$, So we conclude the required factorization.

Definition 5.3. In general, let $m_{1}, m_{2}, \ldots, m_{k}$ be positive integers and $n_{1}, n_{2}, \ldots, n_{\ell}$ be positive integers and let $A_{i j}$ be an m_{i}-by- n_{j} matrix for each $i=1,2, \ldots, k$ and $j=1,2, \ldots, \ell$. The resulting

$$
A=\left(\begin{array}{c|c|c|c}
A_{11} & A_{12} & \cdots & A_{1 \ell} \\
\hline A_{21} & A_{22} & \cdots & A_{2 \ell} \\
\hline \vdots & \vdots & \ddots & \vdots \\
\hline A_{k 1} & A_{k 2} & \cdots & A_{k \ell}
\end{array}\right)
$$

is a k-by- ℓ block matrix (it is also a M-by- N matrix where $M=m_{1}+$ $m_{2}+\cdots+m_{k}$ and $N=n_{1}+n_{2}+\cdots+n_{\ell}$.)
Try to think about under what conditions we can multiply two block matrices.

Proposition 5.4. Suppose $T: V \rightarrow W$ is a linear transformation. Suppose that $W=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{m}$ and $V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n}$

Then there exists $T_{i}: V \rightarrow W_{i}$ such that for $\mathbf{v} \in V, T(\mathbf{v})=T_{1}(\mathbf{v})+$ $T_{2}(\mathbf{v})+\cdots+T_{m}(\mathbf{v})$.

Furthermore, if B_{1}, \ldots, B_{n} are bases for V_{1}, \ldots, V_{n} respectively, and C_{1}, \ldots, C_{m} are bases for W_{1}, \ldots, W_{m} respectively, and $A_{i j}={ }_{C_{i}}\left[\left.T_{i}\right|_{V_{j}}\right]_{B_{j}}$ then the block matrix of T is:
$\left(\begin{array}{c|c|c|c}A_{11} & A_{12} & \cdots & A_{1 n} \\ \hline A_{21} & A_{22} & \cdots & A_{2 n} \\ \hline \vdots & \vdots & \ddots & \vdots \\ \hline A_{m 1} & A_{m 2} & \cdots & A_{m n}\end{array}\right)$

Proof. Omitted.
Definition 5.5. Let A_{1}, \ldots, A_{r} be matrices such that A_{i} is an n_{i}-by- n_{i} matrix. Let $N=n_{1}+n_{2}+\cdots+n_{r}$ and define the N-by- N matrix

$$
A_{1} \oplus A_{2} \oplus \cdots \oplus A_{r}=\left(\begin{array}{c|c|c|c}
A_{1} & 0 & \cdots & 0 \\
\hline 0 & A_{2} & \cdots & 0 \\
\hline \vdots & \vdots & \ddots & \vdots \\
\hline 0 & 0 & \cdots & A_{n}
\end{array}\right)
$$

6. Polynomials

Definition 6.1. Let k be a field. A polynomial with coefficients in k is a sum

$$
f(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}
$$

where $c_{0}, c_{1}, \ldots, c_{n} \in k$.

Theorem 6.2. The polynomial ring $k[x]$ is an infinite dimensional vector space over k with basis $x^{0}, x^{1}, x^{2}, \ldots, x^{n}, \ldots$.

Proof. The ring $k[x]$ is constructed to have this property. Here is a construction of $k[x]$:
a) Consider the set of sequences $f: \mathbb{N} \rightarrow k$ (certainly a vector space)
b) Let $k[x]$ be the subset of those f such that $f_{i} \neq 0$ for finitely many i
c) identify $1 \leftrightarrow(1,0,0, \ldots), x \leftrightarrow(0,1,0, \ldots)$ and so on
d) define the natural addition, and scalar multiplication (as well as multiplication)

Definition 6.3. A monic polynomial is a polynomial of the form $x^{n}+$ $c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}$ where $n \geq 0$. In other words, the leading coefficient of a monic polynomial is 1 .

Definition 6.4. Let $f(x)=c_{n} x^{n}+\cdots+c_{1} x+c_{0}$ with $c_{n} \neq 0$. Then define $\operatorname{deg} f(x)=n$.

Notice that $\operatorname{deg} f g=\operatorname{deg} f+\operatorname{deg} g$.
Definition 6.5. Let a, b be polynomials, and suppose $a \neq 0$. Then there exist unique polynomials q, r such that

$$
b=q a+r
$$

such that $\operatorname{deg} r<\operatorname{deg} a$ or $r=0$.
The polynomial r is called the remainder and q is called the quotient.
Proof. By induction on $N=\operatorname{deg} a$. If $N=0$, then a is a non-zero scalar. So $b=(b / a) \cdot a+0$ as required.

Otherwise write $a=c x^{N}+a^{\prime}$ with $\operatorname{deg} a^{\prime} \leq N-1$ or $a^{\prime}=0$. If $\operatorname{deg} b<\operatorname{deg} a$ or $b=0$, then we may take $q=0$ and $r=b$.

Suppose $\operatorname{deg} b \geq \operatorname{deg} a$. Write $b=d x^{N+j}+$ lower order terms. Then let $b^{\prime}=b-(d / c) x^{j} \cdot a$. Notice that $b^{\prime}=d x^{N+j}+$ lower order terms of $b-$ $d x^{N+j}-(d / c) x^{j} a^{\prime}$.

If $a^{\prime}=0$, then let By induction we may find q^{\prime}, r^{\prime} such that $b^{\prime}=$ $q^{\prime} a^{\prime}+r^{\prime}$ with $\operatorname{deg} r^{\prime}<\operatorname{deg} a^{\prime}$

Definition 6.6. Let I be a subspace of $k[x]$. Then I is called an ideal of $k[x]$ if $f I \subset I$ for all $f \in k[x]$.

Theorem 6.7. Let I be an ideal of $k[x]$. Suppose $I \neq 0$. Then there exists a monic polynomial $m(x)$ such that

$$
I=\{f(x) \cdot m(x) \mid f(x) \in k[x]\} .
$$

Proof. Suppose $I \neq 0$. Let f be a monic polynomial of smallest degree such that $f \in I$. (here we are using the well-ordering principle, that every non-empty subset of natural numbers has a least element).

We claim that every element of I is a multiple of f.
Let $g \in I$. Write $g=q f+r$ with $\operatorname{deg} r<\operatorname{deg} f$, or $r=0$. We have that $g \in I$ and $q f \in I$ as well since $f \in I$.

So $r=g-q f \in I$. But then $r=0$ (since otherwise r is an element of I with smaller degree than f).

So $g=q \cdot f$, as required.
Definition 6.8. Let $f(x), g(x) \in k[x]$. Suppose $f(x)$ and $g(x)$ are not both zero. Then the greatest common divisor of $f(x)$ and $g(x)$, denoted $\operatorname{gcd}(f, g)$, is defined to be the monic polynomial $h(x)$ with the largest degree such that $f(x)=q(x) h(x)$ and $g(x)=r(x) h(x)$.

Theorem 6.9. Let $f, g \in k[x]$ not both zero. Let $h=\operatorname{gcd}(f, g)$. Then there exists polynomials a, b such that

$$
h(x)=a(x) f(x)+b(x) g(x) .
$$

Proof. Let $I=\{a \cdot f+b \cdot g \mid a, b \in k[x]\}$. Check that I is an ideal of $k[x]$. Let $h(x)$ be the monic generator of I. Since $h \in I$, we have $h=a f+b g$ for some $a, b \in k[x]$.

We now will establish that h is the gcd of f, g.
Notice that $f=1 \cdot f+0 \cdot g \in I$ so $f=q h$ for some q. Similarly, $g(x)=r(x) h(x)$ for some $r(x)$.

Suppose H is another polynomial which divides both f, g. Then H divides also $a f+b g=h$, which implies $\operatorname{deg} H \leq \operatorname{deg} h$ as required.

Definition 6.10. The polynomial $f(x)$ is called reducible if $f(x)=$ $g(x) h(x)$ and g, h are both non-constant polynomials.

A non-constant polynomial $f(x)$ is called irreducible if it is not reducible.

Theorem 6.11. Let $f(x) \in k[x]$ be a non-constant polynomial. Then there are monic, irreducible polynomials p_{1}, \ldots, p_{n} such that

$$
f(x)=c p_{1} \cdots p_{n}
$$

where c is the leading coefficient of $f(x)$.
Proof. Sketch.
a) If f is irreducible we are done
b) else write $f=g h$ each having degree strictly less than the degree of f
c) find a factorization of g, h
d) for uniqueness, prove that if p is irreducible and p divides $g h$ then p divides g or p divides h

Theorem 6.12. The only irreducible polynomials in $\mathbb{C}[x]$ are $x-a$ for $a \in \mathbb{C}$.

Proof. \mathbb{C} is algebraically closed. So if $f(x) \in \mathbb{C}[x]$ is a non-constant polynomial, f has a root in \mathbb{C}. So if $\operatorname{deg} f>1$ it is not reducible since we can write $f(x)=(x-a) g(x)$ where $f(a)=0$.

The only irreducible monic polynomials are $x-a$ where $a \in \mathbb{C}$

7. Algebra of linear transformations

Definition 7.1. Let V and W be vector spaces. The set of all linear transformations from V to W is denoted by $\mathcal{L}(V, W)$.

Theorem 7.2. The set of all linear transformations from V to W is a vector space. The addition and scalar multiplication are defined as follows:

$$
(T+S)(\mathbf{v})=T(\mathbf{v})+S(\mathbf{v}) \text { for all } \mathbf{v} \in V
$$

for all $T, S \in \mathcal{L}(V, W)$ and

$$
(c T)(\mathbf{v})=c \cdot(T(\mathbf{v})) \text { for all } \mathbf{v} \in V
$$

Proof. Verify that $T+S$ and $c T$ are both linear transformations. Verify that the zero function $0: V \rightarrow W$ defined by $0(\mathbf{v})=\mathbf{0}_{W}$ for all $\mathbf{v} \in V$ is a linear transformation.

Let \mathcal{F} be the set of all functions from $V \rightarrow W$. We claim that \mathcal{F} is a vector space under the above operations. Then $\mathcal{L}(V, W)$ will be a vector space by the subspace test.

THe zero vector of \mathcal{F} is the zero function $0(\mathbf{v})=\mathbf{0}_{W}$ for all $\mathbf{v} \in V$.
The negative of $g \in \mathcal{F}$ is the function $-g$ defined by $(-g)(\mathbf{v})=$ $-(g(\mathbf{v}))$ for all $\mathbf{v} \in V$.

The other six axioms can be checked (it is kind of tedious though). If you have never tried it, then please try.

Definition 7.3. Let V be a vector space. The set of all linear transformations $T: V \rightarrow V$ is denoted $\mathcal{L}(V)$.

We know this is a vector space over k. But in fact it is also known to be something called a " k-algebra". Other examples of k-algebras are the polynomial ring $k[x]$, and the n-by- n matrices over k.

Definition 7.4. Suppose that \mathcal{A} is a k-vector space. If, in addition, there is a product

$$
\begin{aligned}
& \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A} \\
& (A, B) \mapsto A \cdot B
\end{aligned}
$$

such that
a) $A \cdot(\beta B+C)=\beta A B+A C$ for all $A, B, C \in \mathcal{A}$ and $c \in k$
b) $(\alpha A+B) \cdot C=\alpha A C+B C$ for all $A, B, C \in \mathcal{A}$ and $c \in k$
c) there exists $1 \in \mathcal{A}$ such that $1 \cdot A=A \cdot 1=A$ for all $A \in \mathcal{A}$
d) $A(B C)=(A B) C$ for all $A, B, C \in \mathcal{A}$.
then we say that \mathcal{A} is a k-algebra.
Theorem 7.5. The space $\mathcal{L}(V)$ is a k-algebra.
Proof. Omitted.
Theorem 7.6. Let V be a vector space with basis B, and W a vector space with basis B^{\prime}. Suppose $n=\operatorname{dim}(V)$ and $m=\operatorname{dim}(W)$. Then define a map

$$
\Psi: \mathcal{L}(V, W) \rightarrow k^{m \times n}
$$

by the rule

$$
\Psi(T)={ }_{B^{\prime}}[T]_{B}
$$

for all $T \in \mathcal{L}(V, W)$.
Then Ψ is an isomorphism of vector spaces.
Now, suppose that $V=W$ and $B=B^{\prime}$ so that

$$
\Psi(T)={ }_{B}[T]_{B}
$$

for all $T: V \rightarrow V$, then

$$
\Psi: \mathcal{L}(V) \rightarrow k^{n \times n}
$$

is an isomorphism of k-algebras (in particular, $\Psi\left(c \cdot I_{V}\right)=c \cdot I_{n}$ and $\Psi(A B)=\Psi(A) \Psi(B))$.

Proof. Try it.

8. Inner Product Spaces

In this chapter especially, we will take $k=\mathbb{C}$ or $k=\mathbb{R}$. Our prototype inner product for real vector spaces is the dot product $\langle\mathbf{v}, \mathbf{u}\rangle=$ $\sum_{i=1}^{n} v_{i} u_{i}=\mathbf{v}^{T} \mathbf{u}$. In general, we have the following definition.

Definition 8.1. Let V be a real vector space. A symmetric inner product on V is a function

$$
\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}
$$

such that
a) $\langle\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{w}, \mathbf{v}\rangle$ for all $\mathbf{v}, \mathbf{w} \in V$.
b) $\langle a \mathbf{v}+\mathbf{w}, \mathbf{u}\rangle=a\langle\mathbf{v}, \mathbf{u}\rangle+\langle\mathbf{w}, \mathbf{u}\rangle$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $a \in \mathbb{R}$
c) $\langle\mathbf{v}, \mathbf{v}\rangle \geq 0$ for all $\mathbf{v} \in V$ with equality if and only if $\mathbf{v}=\mathbf{0}$.

If $\langle\cdot, \cdot\rangle$ is a symmetric inner product on V then $(V,\langle\cdot, \cdot\rangle)$ is called a real inner product space.

We can define a similar notion for complex vector spaces, but we have to be careful with the symmetry. The prototypical complex inner product space is \mathbb{C}^{n} with inner product $\langle\mathbf{v}, \mathbf{u}\rangle=\sum_{i=1}^{n} \overline{v_{i}} u_{i}=\mathbf{v}^{*} \mathbf{u}$ where \mathbf{v}^{*} means the conjugate transpose of \mathbf{v}. In general, we have the following definition.
Definition 8.2. Let V be a complex vector space. A hermitian inner product on V is a function

$$
\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}
$$

such that
a) $\langle\mathbf{v}, \mathbf{w}\rangle=\overline{\langle\mathbf{w}, \mathbf{v}\rangle}$ for all $\mathbf{v}, \mathbf{w} \in V$.
b) $\langle a \mathbf{v}+\mathbf{w}, \mathbf{u}\rangle=\bar{a}\langle\mathbf{v}, \mathbf{u}\rangle+\langle\mathbf{w}, \mathbf{u}\rangle$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $a \in \mathbb{C}$
c) $\langle\mathbf{v}, \mathbf{v}\rangle \geq 0$ for all $\mathbf{v} \in V$ with equality if and only if $\mathbf{v}=\mathbf{0}$.

If $\langle\cdot, \cdot\rangle$ is an hermitian inner product on V then $(V,\langle\cdot, \cdot\rangle)$ is called a complex inner product space.

Remark 8.3. From now on, whenever we say "inner product space", unless otherwise noted, we mean "(real or complex) inner product space".

Definition 8.4. Let \mathbf{u} and \mathbf{v} be two vectors in an inner product space. We say that \mathbf{u} and \mathbf{v} are orthogonal if $\langle\mathbf{v}, \mathbf{u}\rangle=0$.

If S, T are non-empty subsets of V, then we say that S and T are orthogonal if $\langle\mathbf{s}, \mathbf{t}\rangle=0$ for all $\mathbf{s} \in S$ and $\mathbf{t} \in T$.

Proposition 8.5. Let V be a (real or complex) inner product space. Then
a) $\langle\mathbf{0}, \mathbf{v}\rangle=0$ for all $\mathbf{v} \in V$
b) if $\langle\mathbf{u}, \mathbf{v}\rangle=0$ for all $\mathbf{v} \in V$ then $\mathbf{u}=\mathbf{0}$.

Proof. Omitted.

Definition 8.6. Let V be a (real or complex) inner product space. For each $\mathbf{v} \in V$, define the norm of \mathbf{v}, denoted by $\|\mathbf{v}\|$, by

$$
\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle}
$$

Proposition 8.7. Let V be an inner product space. Then
a) $\|v e c v\| \geq 0$ with equality if and only if $\mathbf{v}=\mathbf{0}$
b) $\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$
c) $\|\mathbf{v}\|^{2}=\langle\mathbf{v}, \mathbf{v}\rangle$
d) if $\langle\mathbf{u}, \mathbf{v}\rangle=0$ then $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$
e) $\|\mathbf{v}+\mathbf{u}\|^{2}+\|\mathbf{v}-\mathbf{u}\|^{2}=2\|\mathbf{v}\|^{2}+2\|\mathbf{u}\|^{2}$

Proof. Omitted.
Definition 8.8. Let \mathbf{u} be a non-zero vector. Let $\mathbf{v} \in V$. We define the projection of \mathbf{v} onto \mathbf{u} to be the vector

$$
\mathbf{x}=\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\|\mathbf{u}\|^{2}} \mathbf{u}=\left\langle\mathbf{v}, \frac{\mathbf{u}}{\|\mathbf{u}\|}\right\rangle \frac{\mathbf{u}}{\|\mathbf{u}\|}
$$

Proposition 8.9. Let \mathbf{u} be a non-zero vector. Let $\mathbf{x}=\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\|\mathbf{u}\|^{2}} \mathbf{u}$ be the projection of \mathbf{v} onto \mathbf{u}. Then $\mathbf{v}=\mathbf{x}+(\mathbf{v}-\mathbf{x})$ is a decomposition of \mathbf{v} into two orthogonal vectors.

Proof. Omitted.
Theorem 8.10. Let V be a (real or complex) inner product space. Then

$$
|\langle\mathbf{v}, \mathbf{w}\rangle| \leq\|\mathbf{v}\|\|\mathbf{w}\|
$$

with equality if and only if \mathbf{v}, \mathbf{w} are linearly dependent.
Proof. The theorem is true when either $\mathbf{v}=\mathbf{0}$ or $\mathbf{w}=\mathbf{0}$. Now, write $\mathbf{v}=\mathbf{x}+(\mathbf{v}-\mathbf{x})$ as in Proposition 8.9. Then since \mathbf{x} is orthogonal to $\mathbf{v}-\mathbf{x}$, we have

$$
\begin{aligned}
\|\mathbf{v}\|^{2} & =\|\mathbf{x}\|^{2}+\|\mathbf{v}-\mathbf{x}\|^{2} \geq\|\mathbf{x}\|^{2} \\
& =\left\|\frac{\langle\mathbf{v}, \mathbf{w}\rangle}{\|\mathbf{w}\|^{2}} \mathbf{w}\right\| \\
& =\frac{|\langle\mathbf{v}, \mathbf{w}\rangle|^{2}}{\|\mathbf{w}\|^{2}}
\end{aligned}
$$

Now, if the above inequality is an equality then $\mathbf{x}=\mathbf{v}$ so \mathbf{w} is in the span of \mathbf{v}.

Conversely, if $\mathbf{w}=c \mathbf{v}$ check that $|\langle\mathbf{w}, \mathbf{v}\rangle|=|c|\|\mathbf{v}\|^{2}=\|\mathbf{v}\|\|\mathbf{w}\|$.

Corollary 8.11. We have

$$
\|\mathbf{v}+\mathbf{u}\| \leq\|\mathbf{v}\|+\|\mathbf{u}\|
$$

Proof. Omitted.
Definition 8.12. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be non-zero vectors. The list $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is called mutually orthogonal if

$$
\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=0 \text { for all } 1 \leq i, j \leq n \text { with } i \neq j
$$

If the list $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is mutually orthogonal, it is called orthonormal if in addition $\left\langle\mathbf{v}_{i}, \mathbf{v}_{i}\right\rangle=1$ for all $i=1,2, \ldots, n$.

If the list $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of orthonormal vectors is such that $\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)=V$, then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is called an orthonormal basis for V.

Proposition 8.13. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be a list of non-zero, orthonormal vectors. Then if $\mathbf{v}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}$, we have

$$
c_{1}=\left\langle\mathbf{v}_{1}, \mathbf{v}\right\rangle, c_{2}=\left\langle\mathbf{v}_{2}, \mathbf{v}\right\rangle, \ldots, c_{n}=\left\langle\mathbf{v}_{n}, \mathbf{v}\right\rangle .
$$

In particular, a list of orthonormal vectors is linearly independent.
Proof. Consider

$$
\begin{aligned}
\left\langle\mathbf{v}_{1}, \mathbf{v}\right\rangle & =\left\langle\mathbf{v}_{1}, c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}\right\rangle \\
& =c_{1}\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle+c_{2}\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle+\cdots+c_{n}\left\langle\mathbf{v}_{1}, \mathbf{v}_{n}\right\rangle \\
& =c_{1}
\end{aligned}
$$

since $\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle=1$ and $\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=0$ and so on. The calculations for $c_{2}, c_{3}, \ldots, c_{n}$ are similar.

Definition 8.14. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ be a list of orthonormal vectors and $U=\operatorname{span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right)$. The orthogonal projection of a vector \mathbf{v} onto U is defined to be $P_{U}(\mathbf{v})$ where

$$
P_{U}(\mathbf{v})=\sum_{i=1}^{n}\left\langle\mathbf{u}_{i}, \mathbf{v}\right\rangle \mathbf{u}_{i} .
$$

The orthogonal projection $P_{U}: V \rightarrow V$ satisfies

$$
P_{U}^{2}=P_{U}
$$

and

$$
P_{U}(V)=U
$$

Theorem 8.15. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be a basis for V. Then there orthornormal vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ such that
a) $\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{i}\right)=\operatorname{span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{i}\right)$ for each $i=1,2, \ldots, n$
b) Letting $U_{i}=\operatorname{span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{i}\right)$, set $\mathbf{y}_{i+1}=\mathbf{v}_{i+1}-P_{U_{i}}\left(\mathbf{v}_{i+1}\right)$ and then $\mathbf{u}_{i+1}=\frac{\mathbf{y}_{i+1}}{\left\|\mathbf{y}_{i+1}\right\|}$
Proof. Omitted.
Definition 8.16. A linear functional on V is a linear transformation $f: V \rightarrow k$ where k is the field of scalars of V.

The set of all linear functionals on V is a vector space, called the dual of V, denoted V^{\vee} or $\mathcal{L}(V, k)$.

If V is an inner product space and \mathbf{u} is a fixed vector, then we can construct a linear functional by defining $f(\mathbf{v})=\langle\mathbf{u}, \mathbf{v}\rangle$.

Theorem 8.17. Let V be a finite dimensional inner product space. There is a 1-1 correspondence between linear functionals and vectors of V.

Proof. For $\mathbf{v} \in V$ define $f_{v}: V \rightarrow k$ by the rule

$$
f_{\mathbf{v}}(\mathbf{w})=\langle\mathbf{v}, \mathbf{w}\rangle
$$

THe properties of inner product spaces tell us that $f_{\mathbf{v}}$ is linear.
Furthermore, $f_{\mathbf{v}+c \mathbf{w}}=f_{\mathbf{v}}+c f_{\mathbf{w}}$. So the map $\mathbf{v} \mapsto f_{\mathbf{v}}$ is a linear transformation

$$
V \rightarrow V^{\vee}
$$

Let $f: V \rightarrow k$ be a linear transformation (in other words, $f \in V^{\vee}$). If $f(\mathbf{w})=0$ for all \mathbf{w} then $f=f_{\mathbf{0}}$.

Else there exists $\mathbf{w} \in V$ such that $f(\mathbf{w}) \neq 0$. By the rank-nullity theorem (Theorem 1.8), if U is the nullspace of f, U has dimension $n-1$. Let \mathbf{u} be a unit vector spanning the orthogonal complement of U. Then calculate $c=f(\mathbf{u})$ and notice that $f=f_{c \mathbf{u}}$.

Remark 8.18. There is a Riesz Representation Theorem for complete inner product spaces (a.k.a. Hilbert spaces).

Proposition 8.19. Let V, W be two inner product spaces with orthonormal bases B for V and B^{\prime} for W. Let $T: V \rightarrow W$. Then the matrix of T relative to B and B^{\prime} is given by the matrix with i, j-th entry $\left\langle\mathbf{w}_{i}, T\left(\mathbf{v}_{j}\right)\right\rangle$.

Proof. To compute the matrix of T, we compute the coordinates of $T\left(\mathbf{v}_{j}\right)$ relative to B^{\prime}, the i-th coordinate is given by

$$
\left\langle\mathbf{w}_{i}, T\left(\mathbf{v}_{j}\right)\right\rangle
$$

by Proposition 8.13.

Definition 8.20. Let $T: V \rightarrow W$ be a linear transformation. A linear transformation $S: W \rightarrow V$ is called an adjoint of T if

$$
\langle\mathbf{w}, T(\mathbf{v})\rangle=\left\langle T^{*}(\mathbf{w}), \mathbf{v}\right\rangle
$$

for all $\mathbf{w} \in W$ and $\mathbf{v} \in V$.
The matrix of the adjoint is the conjugate transpose of the matrix.
Definition 8.21. Let $T: V \rightarrow V$ be a linear transformation and V are inner product spaces. Then T is called an isometry if

$$
\|T(\mathbf{v})\|=\|\mathbf{v}\|
$$

for all $\mathbf{v} \in V$.
Proposition 8.22. Let $T: V \rightarrow V$ and $S: V \rightarrow V$ be isometries. Then $S T$ is an isometry. T is $1-1$. If V is finite-dimensional then T is invertible and T^{-1} is an isometry.

Proof. Notice

$$
\|S T(\mathbf{v})\|=\|S(T(\mathbf{v}))\|=\|T(\mathbf{v})\|=\|\mathbf{v}\|
$$

since both S and T are isometries.
If $T(\mathbf{v})=\mathbf{0}$ then $0=\|T(\mathbf{v})\|=\|\mathbf{v}\|$ so $\mathbf{v}=\mathbf{0}$. So T is $1-1$.
By the rank-nullity theorem, if T is $1-1$ and V is finite-dimensional, then T is invertible. Writing $T^{-1} \mathbf{w}=\mathbf{v}$ if and only if $T(\mathbf{v})=\mathbf{w}$ we have

$$
\|\mathbf{v}\|=\|T(\mathbf{v})\|
$$

so

$$
\left\|T^{-1}(\mathbf{w})\right\|=\|\mathbf{w}\|
$$

Proposition 8.23. Let $T: V \rightarrow V$ be a linear transformation. Then $\langle T(\mathbf{v}), T(\mathbf{u})\rangle=\langle\mathbf{v}, \mathbf{u}\rangle$ for all $\mathbf{v}, \mathbf{u} \in V$ if and only if T is an isometry.

Proof. Suppose T is an isometry. There is a trick to proving that $\langle T(\mathbf{v}), T(\mathbf{u})\rangle=\langle\mathbf{v}, \mathbf{u}\rangle$. It is to expand

$$
\langle T(\mathbf{v} \pm \mathbf{u}), T(\mathbf{v} \pm \mathbf{u})\rangle
$$

and compare to $\langle\mathbf{v} \pm \mathbf{u}, \mathbf{v} \pm \mathbf{u}\rangle$.
Of course, if $\langle T(\mathbf{v}), T(\mathbf{u})\rangle=\langle\mathbf{v}, \mathbf{u}\rangle$ then T is an isometry because you can put $\mathbf{v}=\mathbf{u}$.

Proposition 8.24. Let $T: V \rightarrow V$ where V is finite-dimensional. Then T is an isometry if and only if $T^{*} T=I$.

Proof. We have

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\langle T(\mathbf{u}), T(\mathbf{v})\rangle=\left\langle\mathbf{u}, T^{*} T(\mathbf{v})\right\rangle
$$

Subtracting $\langle\mathbf{u}, \mathbf{v}\rangle$ from both sides:

$$
0=\left\langle\mathbf{u}, T^{*} T \mathbf{v}-\mathbf{v}\right\rangle
$$

for all $\mathbf{v}, \mathbf{u} \in V$. Therefore, $T^{*} T \mathbf{v}=\mathbf{v}$ for all $\mathbf{v} \in V$ so $T^{*} T=I$.
If $T^{*} T=I$ then

$$
\langle\mathbf{v}, \mathbf{u}\rangle=\left\langle\mathbf{v}, T^{*} T \mathbf{u}\right\rangle=\langle T \mathbf{v}, T \mathbf{u}\rangle
$$

proving that T is unitary.
Definition 8.25. Let U be an n-by- n matrix. Then U is called unitary if $U^{*} U=I$.

By Proposition 8.24 and Proposition 8.19, a unitary matrix is the matrix representation of an isometry relative to an orthonormal basis, and it is also an isometry $k^{n} \rightarrow k^{n}$.

A unitary matrix with real entries, is called an orthogonal matrix. Real orthogonal matrices satisfy $Q^{T} Q=I$.

Proposition 8.26. Let U, V be $n-b y-n$ matrices and W and $m-b y-m$ matrix. THen
a) If U, V are unitary then so is $U V$
b) If U and W is unitary then so is

$$
U \oplus W=\left(\begin{array}{cc}
U & 0 \\
0 & W
\end{array}\right)
$$

c) If U is unitary then $|\operatorname{det}(U)|=1$.

Proof. Omitted.
Theorem 8.27. Let U be an n-by-n matrix. The following are equivalent.
a) U is unitary
b) U^{T}, U^{*} are unitary
c) the columns of U form an orthonormal basis for k^{n} (remember, $k=\mathbb{R}$ or \mathbb{C} depending on if we have a real or complex inner product space)
d) the rows of U form an orthonormal basis

Proof. Omitted.
Definition 8.28. A rank 1 projection matrix is a matrix $P=\mathbf{u u}^{*}$ where \mathbf{u} is a non-zero unit vector (in other words, $\|\mathbf{u}\|=1$.

We have that $P_{U}=P$ for $U=\operatorname{span}(\mathbf{u})$ in the terminology of Theorem 8.15.

Proposition 8.29. Let P be a rank 1 projection matrix, corresponding to unit vector \mathbf{u}.
a) the columnspace of P is $\operatorname{span}(\mathbf{u})$
b) If $\langle\mathbf{v}, \mathbf{u}\rangle=0$ then $P_{U}(\mathbf{v})=\mathbf{0}$
c) If $\mathbf{v}=c \mathbf{u}$ then $P_{U}(\mathbf{v})=\mathbf{v}$.
d) $P_{U}^{*}=P_{U}$
e) $P_{U}^{2}=P_{U}$

Proof. We have $P(\mathbf{v})=\mathbf{u u}^{*} \mathbf{v}=\mathbf{u}\langle\mathbf{u}, \mathbf{v}\rangle$ so the columnspace (in other words, the range of P) is equal to the span of \mathbf{u}.

For part b), use the above formula again.
For part c) $P(c \mathbf{u})=\mathbf{u u}^{*}(c \mathbf{u})=c \mathbf{u}$
Compute $P_{U}^{*}=\left(\mathbf{u u}^{*}\right)^{*}=\mathbf{u} \mathbf{u}^{*}$
Similarly, $P_{U}^{2}=\mathbf{u u}^{*} \mathbf{u u}^{*}=\mathbf{u u}^{*}$ since $\mathbf{u}^{*} \mathbf{u}=1$.
Definition 8.30. Let $\mathbf{w} \neq \mathbf{0}$. Let $\mathbf{u}=\frac{\mathbf{w}}{\|\mathbf{w}\|}$ with rank 1 projection

$$
P_{\mathbf{u}}=\mathbf{u u}^{*}=\frac{\mathbf{w}^{*}}{\mathbf{w}^{*} \mathbf{w}}
$$

The Householder matrix corresponding to \mathbf{w} is defined to be

$$
U_{\mathbf{w}}=1-2 P_{\mathbf{u}}
$$

with corresponding Householder transformation

$$
\mathbf{x} \mapsto \mathbf{x}-2\langle\mathbf{x}, \mathbf{u}\rangle \mathbf{u}
$$

Theorem 8.31. Let U be a Householder matrix. Then $U^{*}=U=U^{-1}$, If U is a real Householder matrix then $U^{T}=U=U^{-1}$.

Proof.

$$
U^{*} U=\left(1-2 P_{\mathbf{u}}\right)^{2}=1-4 P_{\mathbf{u}}+4 P_{\mathbf{u}}^{2}=1
$$

So U is unitary, $U^{*}=U$ since $P_{\mathbf{u}}^{*}=P_{\mathbf{u}}$, and so

$$
U=U^{*}=U^{-1}
$$

If U is real then $U^{T}=U^{*}$ so the second part follows.
Theorem 8.32. Let \mathbf{x} and \mathbf{y} be vectors in \mathbb{R}^{n}. Suppose $0 \neq\|\mathbf{x}\|=\|\mathbf{y}\|$. Let

$$
\sigma=\left\{\begin{array}{rl}
1 & \text { if }\langle\mathbf{x}, \mathbf{y}\rangle \leq 0 \\
-1 & \text { if }\langle\mathbf{x}, \mathbf{y}\rangle>0
\end{array},\right.
$$

and let $\mathbf{w}=\mathbf{y}-\sigma \mathbf{x}$. Then $\sigma U_{\mathbf{w}}$ is real orthogonal and $\sigma U_{\mathbf{w}} \mathbf{x}=\mathbf{y}$.
Proof. We just need to check that $\sigma U_{\mathbf{w}} \mathbf{x}=\mathbf{y}$. Let $\mathbf{w}_{+}=\mathbf{x}-\mathbf{y}$ and $\mathbf{w}_{-}=\mathbf{x}+\mathbf{y}$. Then notice that $\left\langle\mathbf{w}_{+}, \mathbf{w}_{-}\right\rangle=\|\mathbf{x}\|^{2}-\|\mathbf{y}\|^{2}=0$.

So

$$
\begin{aligned}
& U_{\mathbf{w}_{-}} \mathbf{w}_{+}=\mathbf{w}_{+} \\
& U_{\mathbf{w}_{-}} \mathbf{w}_{-}=-\mathbf{w}_{-} \\
& U_{\mathbf{w}_{+}} \mathbf{w}_{+}=-\mathbf{w}_{+} \\
& U_{\mathbf{w}_{-}} \mathbf{w}_{-}=\mathbf{w}_{-}
\end{aligned}
$$

Therefore, writing $\mathbf{x}=(1 / 2) \mathbf{w}_{+}+(1 / 2) \mathbf{w}_{-}$,

$$
U_{\mathbf{w}_{-}} \mathbf{x}=(1 / 2) \mathbf{w}_{+}-(1 / 2) \mathbf{w}_{-}=\mathbf{y},
$$

and similarly,

$$
U_{\mathbf{w}_{+}} \mathbf{x}=-\mathbf{y}
$$

Accounting for the definition of σ and \mathbf{w} proves the theorem.
Theorem 8.33. Let $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$ and suppose $\|\mathbf{x}\|=\|\mathbf{y}\| \neq 0$. Let

$$
\sigma=\left\{\begin{array}{rl}
1 & \text { if }\langle\mathbf{x}, \mathbf{y}\rangle=0, \\
-\overline{\langle\mathbf{x}, \mathbf{y}\rangle} /|\langle\mathbf{x}, \mathbf{y}\rangle| & \text { if }\langle\mathbf{x}, \mathbf{y}\rangle \neq 0,
\end{array},\right.
$$

and let $\mathbf{w}=\mathbf{y}-\sigma \mathbf{x}$. Then $\sigma U_{\mathbf{w}}$ is unitary and $\sigma U_{\mathbf{w}} \mathbf{x}=\mathbf{y}$.
Proof. Omitted (but similar to the real case).
Theorem 8.34. Let A be an m-by-n matrix and suppose that $m \geq n$. There exists an m-by-m unitary matrix V and upper triangular $n-b y-n$ matrix R whose diagonal entries are real and non-negative, such that

$$
A=V\binom{R}{0} .
$$

If $V=\left(Q Q^{\prime}\right)$ in which Q contains the first n columns of V, then Q has orthonormal columns and $A=Q R$.

If $\operatorname{rank}(A)=n$, then the factors Q and R are unique and R has positive diagonal entries.

Proof. Let \mathbf{a}_{1} be the first column of A. Let $c=\left\|\mathbf{a}_{1}\right\|$. Use a Householder matrix U_{1} such that

$$
U_{1} A=\left(\begin{array}{cc}
c & . \\
\mathbf{0} & A^{\prime}
\end{array}\right)
$$

where A^{\prime} is an $m-1$-by- $n-1$ matrix.
Roughly, we then apply induction.

9. Diagonalization and the Cayley-Hamilton Theorem

Definition 9.1. Let A be an n-by- n matrix. Then λ is called an eigenvalue for A if there exists $\mathbf{0} \neq \mathbf{v} \in \mathbb{C}^{n}$ such that

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

If $\mathbf{v} \neq \mathbf{0}$ and $A \mathbf{v}=\lambda \mathbf{v}$ for some $\lambda \in \mathbb{C}$, then \mathbf{v} is called an eigenvector for A.

The pair (λ, \mathbf{v}) such that $A \mathbf{v}=\lambda \mathbf{v}$ and $\mathbf{v} \neq \mathbf{0}$ is called an eigenpair.
Theorem 9.2. Let A be an n-by-n matrix. Let $\lambda \in \mathbb{C}$. The following are equivalent
a) λ is an eigenvalue for A
b) λ is an eigenvalue for A^{T}
c) $A \mathbf{v}=\lambda \mathbf{v}$ for some $\mathbf{0} \neq \mathbf{v} \in \mathbb{C}^{n}$
d) $(A-\lambda I) \mathbf{v}=\mathbf{0}$ has a non-trivial solution
e) $A-\lambda$ is not invertible
f) $A^{T}-\lambda$ is not invertible

Proof. Omitted.

Definition 9.3. Let A be an n-by- n matrix. Then $p_{A}(z)=\operatorname{det}(z I-$ $A)=z^{n}+c_{n-1} z^{n-1}+\cdots+c_{1} z+c_{0}$. Then p_{A} is a monic polynomial of degree n, called the characteristic polynomial.

Each coefficient of p_{A} is a polynomial in the entries of $A, c_{n-1}=$ $-\operatorname{tr}(A)$ and $c_{0}=(-1)^{n} \operatorname{det} A$.

Proof. Omitted.
Proposition 9.4. The characteristic polynomial of

$$
\left(\begin{array}{ll}
A & B \\
0 & C
\end{array}\right)
$$

is $p_{A} p_{B}$.
Proof. Compute

$$
\operatorname{det}\left(\begin{array}{cc}
A-z I & B \\
0 & C-z I
\end{array}\right)=\operatorname{det}(A-z I) \operatorname{det}(C-z I)
$$

by Proposition 5.2.

Definition 9.5. Let $k=\mathbb{C}$ or \mathbb{R}. We say a matrix A is diagonalizable over k if there is an invertible matrix P and a diagonal matrix D (with entries in k) such that

$$
A=P D P^{-1}
$$

We say that a complex matrix A is unitarily diagonalizable if there is a unitary matrix U and diagonal D such that

$$
A=U D U^{*}
$$

We say that a real matrix A is orthogonally diagonalizable if there is an orthogonal matrix Q and diagonal matrix D with real entries such that

$$
A=Q D Q^{T}
$$

Theorem 9.6. Let $k=\mathbb{C}$ or \mathbb{R}.
A matrix is diagonalizable over k if and only if there is a basis of k^{n} consisting of eigenvectors for A.

Proof. Suppose $A=P D P^{-1}$. Then $A P=P D$. The j-th column of the left hand side is

$$
A \mathbf{v}_{j}
$$

where \mathbf{v}_{j} is the j-th column of P. The j-th column of the right hand side is $\lambda_{j} \mathbf{v}_{j}$ so each column of P is an eigenvector. Since P is invertible, there is a basis of k^{n} of eigenvectors.

Each argument may be reversed as well.
Theorem 9.7. Let A be an n-by-n matrix. Then there is a monic polynomial $p \in \mathbb{C}[x]$, with $\operatorname{deg} p \leq n^{2}$ such that $p(A)=0$.

Proof. The dimension of the vector space of n-by- n matrices is n^{2}. So $1, A, A^{2}, \ldots, A^{n^{2}}$ are linearly independent which is enough to guarantee the existence of such polynomial.

Theorem 9.8. Let A be an $n-b y-n$ matrix. Then A has an eigenvalue (in \mathbb{C}).

Proof. Let $p(x)$ be a monic polynomial with $p(A)=0$. Since \mathbb{C} is algebraically closed, we can write

$$
p(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)
$$

So

$$
\left(A-a_{1}\right)\left(A-a_{2}\right) \cdots\left(A-a_{n}\right)=0
$$

If $A-a_{1}$ is not invertible then a_{1} is an eigenvalue. If $A-a_{1}$ is invertible then

$$
\left(A-a_{2}\right) \cdots\left(A-a_{n}\right)=0,
$$

and we proceed similarly until we find that some a_{j} is an eigenvalue of A.

Theorem 9.9. Let A be an n-by-n matrix, with eigenpair (λ, \mathbf{v}) such that $\|\mathbf{v}\|=1$. Then there is a unitary matrix

$$
U=\left(\mathbf{v} U^{\prime}\right)
$$

and an upper triangular matrix T such that

$$
A=U T U^{*}
$$

and $t_{11}=\lambda$ and $t_{11}, t_{22}, \ldots, t_{n n}$ are the eigenvalues of A.
Furthermore, if A is a real matrix with real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and \mathbf{v} has real entries, then there exists an orthogonal matrix $Q=\left(\mathbf{v} Q^{\prime}\right)$ such that $A=Q T Q^{T}$ (therefore, also T has real entries as well with $t_{i i}=\lambda_{i}$ for each i).

Proof. We will prove in the case that A is real. We proceed by induction on n. So suppose that every real matrix with real eigenvalues and real eigenvector \mathbf{x} which is a unit vector, then we can write

$$
A=Q T Q^{T}
$$

where the first column of Q is \mathbf{x} and T is upper triangular.
Let A be a real matrix with real eigenvalues. Let \mathbf{x} be an unit eigenvector. Then Theorem 8.32, there is a unitary matrix U with first column equal to $\mathbf{x}\left(U\right.$ maps \mathbf{e}_{1} to $\left.\mathbf{x}\right)$. Write $U=\left(\mathbf{x} U^{\prime}\right)$. Then

$$
A U=\left(A \mathbf{x} A U^{\prime}\right)
$$

Since the columns of U are orthonormal $U^{\prime T} \mathbf{x}=0$,so

$$
U^{T} A U=\binom{\mathbf{x}^{T}}{U^{T}}\left(\lambda_{1} \mathbf{x} A U^{\prime}\right)=\left(\begin{array}{cc}
\lambda_{1} & \mathbf{x}^{T} A U^{\prime} \\
\lambda_{1} U^{\prime T} \mathbf{x} & U^{\prime T} A U^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
\lambda_{1} & \\
\mathbf{0} & U^{\prime T} A U^{\prime}
\end{array}\right) .
$$

By induction $A^{\prime}=U^{\prime T} A U^{\prime}$ can also be written as $V T V^{T}$.
The eigenvalues of A are $\lambda_{1}, \ldots, \lambda_{n}$ so the eigenvalues of A^{\prime} must be $\lambda_{2}, \ldots, \lambda_{n}$

Now, let $V_{1}=1 \oplus V$ and let $U_{1}=V_{1} U$ is a unitary matrix, and a computation confirms that $U_{1}^{T} A U_{1}$ is an upper-triangular matrix.

Theorem 9.10. Let A be an n-by-n matrix and $p(x)$ its characteristic polynoimal. Then $p(A)=0$.

Proof. Omitted.

Definition 9.11. Let A be an n-by- n matrix. Then A is called normal if $A A^{*}=A^{*} A$.

Theorem 9.12. Let A be an n-by-n matrix. The following are equivalent.
a) A is normal (Definition 9.11)
b) A is unitarily diagonalizable (Definition 9.5)
c) \mathbb{C}^{n} has an orthonormal basis consisting of eigenvectors of A

Now, let A be a real n-by-n matrix. The following are equivalent:
a) A is symmetric
b) A is real orthogonally diagonalizable (there exists an orthogonal matrix Q such that $A=Q D Q^{T}$ for some diagonal D)
c) \mathbb{R}^{n} has an orthonormal basis consisting of eigenvectors of A

Proof. Omitted.

10. Canonical forms

Definition 10.1. Let $T: V \rightarrow V$ be a linear operator. Let U be a subspace of V. We say that U is T-invariant if $T(U) \subset U$.

If U is T-invariant, then the restriction of T to $U,\left.T\right|_{U}$, is a linear operator on U.

Proposition 10.2. Suppose $T: V \rightarrow V$ is a linear transformation. Suppose $V=U \oplus W$ and U is T-invariant. Let $B=\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ be a basis for U and $B^{\prime}=\mathbf{w}_{1}, \ldots, \mathbf{w}_{\ell}$ be a basis for W. Then $B \cup B^{\prime}$ is a basis for V and the matrix of T relative to $B \cup B^{\prime}$ (see Proposition 5.4)

$$
\left(\begin{array}{c|c}
A_{11} & A_{12} \\
\hline 0 & A_{22}
\end{array}\right)
$$

If W is also T-invariant, then the matrix of T is of the form

$$
\left(\begin{array}{cc}
A_{11} & 0 \\
\hline 0 & A_{22}
\end{array}\right)
$$

Proof. Let $C=B \cup B^{\prime}$. The columns of the matrix of T correspond to

$$
\left[T\left(\mathbf{u}_{1}\right)\right]_{C},\left[T\left(\mathbf{u}_{2}\right)\right]_{C}, \ldots,\left[T\left(\mathbf{u}_{k}\right)\right]_{C},\left[T\left(\mathbf{w}_{1}\right]_{C}, \ldots,\left[T\left(\mathbf{w}_{\ell}\right)\right]_{C}\right.
$$

But for $\mathbf{v} \in V$, Proposition 3.2 or Proposition 5.4, we have that $\mathbf{v}=$ $\mathbf{u}+\mathbf{w}$ and

$$
[\mathbf{v}]_{C}=\left(\frac{[\mathbf{u}]_{B}}{[\mathbf{w}]_{B^{\prime}}}\right)
$$

Now, it remains to note that for $\mathbf{u}_{j} \in B, T\left(\mathbf{u}_{i}\right) \in U$, so $T\left(\mathbf{u}_{j}\right)=\mathbf{u}+\mathbf{0}$ according to Theorem 2.11. This implies that the matrix of T is of the form

$$
\left(\begin{array}{c|c}
A_{11} & A_{12} \\
\hline A_{21} & A_{22}
\end{array}\right) .
$$

If W is also T-invariant, a similar argument applies. In this case, our notation Definition 5.5 applies and we write the matrix of T as

$$
A_{11} \oplus A_{22}
$$

where A_{11} is the matrix of $\left.T\right|_{U}: U \rightarrow U$ and A_{22} is the matrix of $\left.T\right|_{W}: W \rightarrow W$.

Proposition 10.3. Let $p(x) \in k[x]$ be a polynomial. Let $T: V \rightarrow V$ be a linear operator. Let U be a T-invariant subspace. Then $p(T)(U)$ is T-invariant. Also $(p(T))^{-1}(U)=\{\mathbf{v} \in V \mid p(T)(\mathbf{v}) \in U\}$ is T invariant.

In particular, $\operatorname{ker}(p(T))$ and $p(T)(V)$ are T-invariant subspaces.
Proof. Omitted.
Proposition 10.4. Let $W=\operatorname{ker}(T-\lambda)$ and let $U \subseteq W$. Then U is a T-invariant subspace.

Proof. Omitted.
Lemma 10.5. Suppose $T: V \rightarrow V$ is a linear operator. Suppose $f(T)=0$. Suppose $f(x)=g(x) h(x)$ and $\operatorname{gcd}(g, h)=1$. Then

$$
V=\operatorname{ker}(g(T)) \oplus \operatorname{ker}(h(T))
$$

Proof. Since $\operatorname{gcd}(g, h)=1$ write $1=a g+b h$ for some polynomials $a, b \in k[x]$ (Theorem 6.9). Let $\mathbf{v} \in V$. Then write

$$
\mathbf{v}=1 \mathbf{v}=a(T) g(T) \mathbf{v}+b(T) h(T) \mathbf{v}
$$

and let $\mathbf{v}_{1}=b(T) h(T) \mathbf{v}$ and let $\mathbf{v}_{2}=a(T) g(T) \mathbf{v}$. Notice that $\mathbf{v}_{1} \in$ $\operatorname{ker}(g(T))$ and $\mathbf{v}_{2} \in \operatorname{ker}(h(T))$. So $V=\operatorname{ker}(g(T))+\operatorname{ker}(h(T))$ but we have to show that the sum is a direct sum (Definition 2.1)

So suppose $\mathbf{v} \in \operatorname{ker}(g(T)) \cap \operatorname{ker}(h(T))$. Then write

$$
\mathbf{v}=a(T) g(T) \mathbf{v}+b(T) h(T) \mathbf{v}=\mathbf{0}+\mathbf{0}=\mathbf{0}
$$

since $g(T) \mathbf{v}=h(T) \mathbf{v}=\mathbf{0}$.
So the sum is a direct sum as required.
Theorem 10.6. Let $p_{T}(z)=\left(z-\lambda_{1}\right)^{m_{1}} \cdots\left(z-\lambda_{k}\right)^{m_{k}}$ be the factorization of p_{T} over the complex numbers. Then

$$
V=\operatorname{ker}\left(T-\lambda_{1}\right)^{m_{1}} \oplus \operatorname{ker}\left(T-\lambda_{2}\right)^{m_{2}} \oplus \cdots \oplus \operatorname{ker}\left(T-\lambda_{k}\right)^{m_{k}}
$$

Proof. Let $f_{1}(z)=\left(z-\lambda_{2}\right)^{m_{2}} \cdots\left(z-\lambda_{k}\right)^{m_{k}}$ and let $V_{1}=\operatorname{ker}\left(f_{1}(T)\right)$. Then $\operatorname{gcd}\left(\left(x-\lambda_{1}\right)^{m_{1}},\left(x-\lambda_{2}\right)^{m_{2}}, \ldots,\left(x-\lambda_{k}\right)^{m_{k}}\right)=1$. Therefore, by Lemma 10.5 ,

$$
V=\operatorname{ker}\left(T-\lambda_{1}\right)^{m_{1}} \oplus \operatorname{ker}\left(f_{1}(T)\right) .
$$

Now, let $T_{1}: V_{1} \rightarrow V_{1}$ be the restriction of T to V_{1}.
To apply induction we need for $f_{1}(z)$ to be the characteristic polynomial of T_{1}. We have $V_{1}=\left(T-\lambda_{1}\right)^{m_{1}}(V)$. The matrix of T is

$$
\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right)
$$

Now, A is an m_{1}-by- m_{1} matrix whose only eigenvalue is λ_{1}. So the characteristic polynomial of A is $\left(x-\lambda_{1}\right)^{m_{1}}$. The characteristic polynomial of $A \oplus B$ is the product of the characteristic polynomials of A and B. So the characteristic polynomial of B must be $f_{1}(z)$. By induction,

$$
V_{1}=\operatorname{ker}\left(T-\lambda_{2}\right)^{m_{2}} \oplus \cdots \oplus \operatorname{ker}\left(T-\lambda_{k}\right)^{m_{k}}
$$

and so

$$
V=\operatorname{ker}\left(T-\lambda_{1}\right)^{m_{1}} \oplus V_{1}=\operatorname{ker}\left(T-\lambda_{1}\right)^{m_{1}} \oplus \cdots \oplus \operatorname{ker}\left(T-\lambda_{k}\right)^{m_{k}}
$$

add reference for characteristic polynomial of direct sum of matri-

ces

Definition 10.7. A matrix A is called nilpotent if $A^{n}=0$ for some $n \geq 1$.

Proposition 10.8. Let A be a square matrix. Then $\operatorname{Spec} A=\{\lambda\}$ if and only if $A-\lambda$ is nilpotent.
Proof. Let $B=A-\lambda$.
If $B^{n}=0$ and $B \mathbf{v}=\lambda \mathbf{v}$ then $\mathbf{0}=B^{n} \mathbf{v}=\lambda^{n} \mathbf{v}$ so $\lambda=0$.
On the other hand, if Spec $B=\{0\}$, then the characteristic polynomial of B must be x^{n} and then apply the Cayley-Hamilton Theorem (Theorem 9.10).

Theorem 10.9. Let A be an n-by-n matrix, with characteristic polynomial $p(x)$ and minimal polynomial $m(x)$. The following are equivalent.
a) A is nilpotent ($A^{k}=0$ for some $k \geq 1$)
b) $p(x)=x^{n}$
c) $m(x)=x^{j}$ for some $1 \leq j \leq n$
d) A has no non-zero eigenvalues
e) $A^{n}=0$

Proof. Omitted.
Definition 10.10. Let $\lambda \in \mathbb{C}$ and $k \geq 1$. A Jordan block of size k with eigenvalue λ is

$$
J_{k}(\lambda)=\left(\begin{array}{ccccc}
\lambda & 1 & & & \\
& \lambda & 1 & & \\
& & \ddots & \ddots & \\
& & & \lambda & 1 \\
& & & & 1
\end{array}\right)
$$

We will now work with nilpotent operators for a little bit.
Definition 10.11. Let $T: V \rightarrow V$. Let $\mathbf{v} \in V$ and suppose that $T^{k}(\mathbf{v})=\mathbf{0}$ and $T^{k-1}(\mathbf{v}) \neq \mathbf{0}$. Then the subspace $U=$ $\operatorname{span}\left(\mathbf{v}, T(\mathbf{v}), \ldots, T^{m-1}(\mathbf{v})\right.$ is called a cyclic subspace of V. The vector \mathbf{v} is called a cyclic vector. We will write $U=C(\mathbf{v})$ to mean that U is a cyclic subspace with cyclic vector \mathbf{v}.
Proposition 10.12. Suppose $U=C(\mathbf{v})$. Then $\mathbf{v}, T(\mathbf{v}), \ldots, T^{m-1}(\mathbf{v})$ is a basis for U where $T^{m}(\mathbf{v})=\mathbf{0}$ and $T^{m-1}(\mathbf{v}) \neq \mathbf{0}$.
Proof. Let $B=\mathbf{v}, T(\mathbf{v}), \ldots, T^{m-1}(\mathbf{v})$. By definition of cyclic subspace, B spans U. Suppose for some $0 \leq j \leq m-1$, we have $c_{j} \neq 0$ and

$$
c_{j} T^{j} \mathbf{v}+c_{j+1} T^{j+1}(\mathbf{v})+\cdots+c_{m-1} T^{m-1}(\mathbf{v})=\mathbf{0}
$$

Then apply T^{m-j-1} to the equation, and using that $T^{m} \mathbf{v}=\mathbf{0}$, we have

$$
c_{j} T^{m-1} \mathbf{v}=\mathbf{0}
$$

and since $T^{m-1} \mathbf{v} \neq \mathbf{0}$, we conclude that $c_{j}=0$. This is a contradiction. This argument tells us that if

$$
c_{0}+c_{1} T \mathbf{v}+\cdots+c_{m-1} T^{m-1} \mathbf{v}=\mathbf{0}
$$

then in the above expression $c_{0}=0, c_{1}=0$, and so on. So B is linearly indendent and so a basis for U.
Proposition 10.13. Suppose $T: V \rightarrow V$ is nilpotent. Then V is the direct sum of cyclic subspaces.

Proof. By induction on $\operatorname{dim} V(\operatorname{dim} V=1$ is clear $)$.
Suppose that the theorem is true for all W with $\operatorname{dim} W<\operatorname{dim} V$.
Let $W=T(V)$. THen $\operatorname{dim} W<\operatorname{dim} V$ by the rank-nullity theorem (since T is nilpotent, its nullspace is non-trivial).

So write $W=C\left(\mathbf{w}_{1}\right) \oplus \cdots \oplus C\left(\mathbf{w}_{n}\right)$.
Then write $T\left(\mathbf{v}_{i}\right)=\mathbf{w}_{i}$. Let $W^{\prime}=C\left(\mathbf{v}_{1}\right)+\cdots+C\left(\mathbf{v}_{n}\right)$. We claim that W^{\prime} is the direct sum

$$
W^{\prime}=C\left(\mathbf{v}_{1}\right) \oplus \cdots \oplus C\left(\mathbf{v}_{n}\right)
$$

Consider

$$
p_{1}(T) \mathbf{v}_{1}+\cdots+p_{n}(T) \mathbf{v}_{n}=\mathbf{0}
$$

We must show that $p_{i}(T) \mathbf{v}_{i}=\mathbf{0}$ for all $1 \leq i \leq n$.
First, suppose that $p_{i}(0) \neq 0$ for some i. Then $\operatorname{gcd}\left(p_{i}, x^{m_{i}}\right)=1$, so there exists $a, b \in k[x]$ such that

$$
a p_{i}+b x^{m_{i}}=1
$$

Now

$$
\mathbf{v}_{i}=\left(a(T) p_{i}(T)+b(T) T^{m_{i}}\right) \mathbf{v}_{i}=a(T) p_{i}(T) \mathbf{v}_{i}
$$

in particular

$$
\mathbf{v}_{i}=\sum_{j \neq i} a(T) p_{j}(T) \mathbf{v}_{j}
$$

proving that $\mathbf{v}_{i}=\mathbf{0}$ which is a contradiction since then $\mathbf{w}_{i}=T\left(\mathbf{v}_{i}\right)=\mathbf{0}$ so the sum for $W=T(V)$ is not direct. Therefore, $p_{i}(0)=0$ for all i. Therefore $p_{i}(x)=x q_{i}(x)$ for some polynomials q_{i}. In particular, each vector $p_{i}(T) \mathbf{v}_{i}=q_{i}(T) \mathbf{w}_{i}$ and the sum for W is a direct sum proving that $q_{i}(T) \mathbf{w}_{i}=\mathbf{0}$, so the sum for W^{\prime} is a direct sum.

Finally, $W^{\prime}+\operatorname{ker}(T)=V$. So find $U \subset \operatorname{ker}(T)$ such that $W^{\prime} \oplus U=V$ and finish the proof by noting that any subspace of $\operatorname{ker}(T)$ is a direct sum of cyclic subspaces.

Definition 10.14. A Jordan matrix is defined to be a direct sum of Jordan blocks:

$$
J=J_{n_{1}}\left(\lambda_{1}\right) \oplus J_{n_{2}}\left(\lambda_{2}\right) \oplus \cdots \oplus J_{n_{k}}\left(\lambda_{k}\right)
$$

Definition 10.15. A nilpotent Jordan block is a matrix

$$
J_{n}=J_{n}(0)=\left(\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & \cdots & 1 \\
0 & 0 & \cdots & 0
\end{array}\right)
$$

Definition 10.16. A nilpotent Jordan matrix is a direct sum of nilpotent Jordan blocks

$$
J_{n_{1}} \oplus J_{n_{2}} \oplus \cdots \oplus J_{n_{k}}=\left(\begin{array}{cccc}
J_{n_{1}} & 0 & \cdots & 0 \\
0 & J_{n_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & J_{n_{k}}
\end{array}\right)
$$

Lemma 10.17. Let $J_{n}=\left(\mathbf{0} \mathbf{e}_{1} \cdots \mathbf{e}_{n-1}\right)$. Let $1 \leq p \leq n-1$. Then $J_{n}^{p}=\left(\begin{array}{lllll}\mathbf{0} & \cdots & \mathbf{e}_{1} & \mathbf{e}_{2} & \cdots\end{array} \mathbf{e}_{n-p}\right)$. And $J_{n}^{n}=0$.

In particular, $\operatorname{rank}\left(J_{n}^{p}\right)=n-p$ for all $p \leq n$.
In particular, $\operatorname{rank}\left(J_{n}^{p}\right)-\operatorname{rank}\left(J_{n}^{p-1}\right)=1$ for $p \leq n$ and 0 for $p>n$.

Proof. Notice that $J_{n} \mathbf{e}_{i+1}=\mathbf{e}_{i}$ for $i \leq n-1$.

Theorem 10.18. Let V be a finite-dimensional vector space. Let T : $V \rightarrow V$ be a linear operator. Suppose that $p_{T}(z)=\left(z-\lambda_{1}\right)^{m_{1}} \cdots(z-$ $\left.\lambda_{n}\right)^{m_{n}}$ is the characteristic polynomial of T. Then the Jordan normal form of T exists and is unique.

Proof. Apply Theorem 10.6. Then apply Proposition 10.13. That proves existence.

Uniqueness is an exercise.

11. Singular value decomposition and applications

Definition 11.1. Let P be a symmetric (if P is real) or Hermitian (if P has complex entries) n-by- n matrix. Let the eigenvalues of P be $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Then P is called positive semi-definite if $\lambda_{1} \geq 0, \lambda_{2} \geq 0$, ..., $\lambda_{n} \geq 0$.

The symmetric matrix P is called positive definite if all the eigenvalues are positive.

Proposition 11.2. Let P be a (symmetric or Hermitian) n-by-n matrix. The following are equivalent
a) P is positive semi-definite
b) $\mathbf{x}^{*} P \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{C}^{n}$ (if P is Hermitian) or for all $\mathbf{x} \in \mathbb{R}^{n}$ if P is symmetric.

Proof. Omitted.

Definition 11.3. Let P be a positive semi-definite matrix. Then there exists a unitary matrix U such that

$$
P=U D U^{*}
$$

and

$$
D=\left(\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right)
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are all non-negative. Define the square root of P, denoted $P^{1 / 2}$, by

$$
P^{1 / 2}=U\left(\begin{array}{cccc}
\sqrt{\lambda_{1}} & & & \\
& \sqrt{\lambda_{2}} & & \\
& & \ddots & \\
& & & \sqrt{\lambda_{n}}
\end{array}\right) U^{*}
$$

Definition 11.4. Let A be an m-by- n complex matrix. Let $r=$ $\operatorname{rank}(A)$. Let $q=\min (m, n)$. Then $A^{*} A$ is a positive semi-definite n-by- n matrix, with r positive eigenvalues. Then let the positive eigenvalues of $\left(A^{*} A\right)^{1 / 2}$ be $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}$ and define

$$
\sigma_{r+1}=\sigma_{r+2}=\cdots=\sigma_{q}=0
$$

Then the singular values of A are defined to be

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0=\sigma_{r+1}=\cdots=\sigma_{q} .
$$

Theorem 11.5. Let A be an $m-b y-n$ matrix, let $r=\operatorname{rank}(A)$, let $q=\min (m, n)$ and let

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{q}
$$

be the singular values of A and let $c \in \mathbb{C}$. Then
a) $\sigma_{1}^{2}, \ldots, \sigma_{r}^{2}$ are the positive eigenvalues of $A^{*} A$ and $A A^{*}$
b) $\sum_{i=1}^{q}=\sigma_{i}^{2}=\operatorname{tr} A^{*} A=\operatorname{tr} A A^{*}$
c) A, A^{*}, A^{T}, and \bar{A} have the same singular values
d) The singular values of $c A$ are $|c| \sigma_{1},|c| \sigma_{2}, \ldots,|c| \sigma_{q}$.

Proof. It is clear that the positive eigenvalues of $A^{*} A$ are the squares of the positive eigenvalues of $\left(A^{*} A\right)^{1 / 2}$. The non-zero eigenvalues of $A A^{*}$ and $A^{*} A$ are the same.

$$
\operatorname{tr} A^{*} A=\sum_{i=1}^{r} \sigma_{1}^{r}
$$

and $\operatorname{tr} A^{*} A=\operatorname{tr} A A^{*}$ by cyclicity of trace.
The non-zero eigenvalues of $A^{*} A$ and $A A^{*}$ are the same. But

$$
\overline{A^{*} A}=A^{T} \bar{A}, \overline{A A^{*}}=\bar{A} A^{T}
$$

which means A, \bar{A}, A^{T}, A^{*} have the same singular values.
Theorem 11.6. Let A be a non-zero m-by-n matrix Let $r=\operatorname{rank}(A)$. Let $\sigma_{1} \geq \sigma_{2} \geq \cdots \sigma_{r}>0$ be the non-zero singular values of A. Define

$$
\Sigma_{r}=\left(\begin{array}{cccc}
\sigma_{1} & & & \\
& \sigma_{2} & & \\
& & \ddots & \\
& & & \sigma_{r}
\end{array}\right)
$$

Then there is an n-by-n unitary matrix V and $m-b y-m$ unitary matrix W such that

$$
A=V \Sigma W^{*}
$$

in which

$$
\Sigma=\left(\begin{array}{cc}
\Sigma_{r} & 0_{r \times n-r} \\
0_{m-r \times r} & 0_{m-r \times n-r}
\end{array}\right)
$$

is the same size as A.
Proof. Suppose $m \geq n$. Write $A^{*} A=W D W^{*}$ with unitary W. Then $D^{1 / 2}=\Sigma_{r} \oplus 0_{n-r}$ Let

$$
E=\left(\begin{array}{ccccccc}
\sigma_{1} & & & & & & \\
& \sigma_{2} & & & & & \\
& & \ddots & & & & \\
& & & \sigma_{r} & & & \\
& & & & 1 & & \\
& & & & & \ddots & \\
& & & & & & 1
\end{array}\right)
$$

so that $D^{1 / 2} E^{-1}=I_{r} \oplus 0_{n-r}$.
Now, let $B=A W E^{-1}$ and consider

$$
\begin{aligned}
B^{*} B & =\left(A W E^{-1}\right)^{*}\left(A W E^{-1}\right) \\
& =\left(E^{-1}\right)^{*} W^{*} A^{*} A W E^{-1} \\
& =E^{-1} W^{*} W D W^{*} W E^{-1} \\
& =E^{-1} D^{1 / 2} D^{1 / 2} E^{-1} \\
& =I_{r} \oplus 0_{n-r}
\end{aligned}
$$

Write $B=\left(\begin{array}{ll}V_{r} & B^{\prime}\end{array}\right)$ so that V_{r} is the first r columns of B. NOtice $B^{*} B=\left(\begin{array}{cc}V_{r}^{*} V_{r} & V_{r}^{*} B^{\prime} \\ B^{\prime *} V_{r} & \left(B^{\prime}\right)^{*} B^{\prime}\end{array}\right)=I_{r} \oplus 0_{n-r}$.

So the columns of V_{r} are orthonormal, so they may be extended to an orthonormal basis of \mathbb{C}^{m}, so let $V=\left(V_{r} V^{\prime}\right)$ be a unitary matrix. On the other hand, $\left(B^{\prime}\right)^{*} B^{\prime}=0$ means that each columns of B^{\prime} is zero, so B^{\prime} is zero.

Now, let us compare $A W$ and $V \Sigma$.

$$
\begin{aligned}
& V \sigma=\left(V_{r} V^{\prime}\right)\left(\begin{array}{cc}
\Sigma_{r} & 0_{r \times n-r} \\
0_{m-r \times r} & 0_{m-r \times n-r}
\end{array}\right)=\left(V_{r} \Sigma_{r} 0_{m \times n-r}\right) . \\
& A W=B E=\left(V_{r} 0\right)\left(\Sigma_{r} \oplus I_{n-r}\right)=\left(V_{r} \Sigma_{r} 0_{m \times n-r}\right.
\end{aligned}
$$

as required.

12. Quadric surfaces

Definition 12.1. A quadric surface is a surface in \mathbb{R}^{3} with an equation of the form

$$
a x^{2}+b x y+c x z+d y^{2}+e y z+f z^{2}+g x+h y+i z+l=0
$$

where $a, b, c, d, e, f, g, h, i \in \mathbb{R}$ and at least one of a, b, c, d, e, f is nonzero. (A quadric surface is just a surface defined by a degree 2 equation in $x, y, z)$.

Definition 12.2. A quadratic form (for our purposes) is a function $q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$ for a symmetric matrix A.
Definition 12.3. Let $S=\left\{a x^{2}+b x y+\cdots+i z+l=0\right\}$ be a quadric surface. Define a quadratic form $q_{S}(x, y, z, w)=a x^{2}+b x y+c x z+$ $d y^{2}+e y z+f z^{2}+g x w+h y w+i z w+l w^{2}$ with associated matrix

$$
A_{S}=\left(\begin{array}{cccc}
a & b / 2 & c / 2 & g / 2 \\
b / 2 & d & e / 2 & h / 2 \\
c / 2 & e / 2 & f & i / 2 \\
g / 2 & h / 2 & i / 2 & l
\end{array}\right)
$$

Definition 12.4. Let S be a quadric surface, with quadratic form q_{S} and matrix A_{S}. Then $A_{S}=Q D Q^{T}$ since A_{S} is symmetric. Let $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ be the eigenvalues of A_{S}.

Then if one or more $\lambda_{i}=0$ then S is called degenerate.
The goal is now to classify all the quadric surfaces. We will do this in class if we have time.

References

[Axl15] Sheldon Axler. Linear algebra done right. Third. Undergraduate Texts in Mathematics. Springer, Cham, 2015, pp. xviii +340. URL: https://doi.org/10.1007/978-3-319-11080-6.
[GH17] Stephan Ramon Garcia and Roger A. Horn. A second course in linear algebra. English. Cambridge: Cambridge University Press, 2017, pp. xix +426.

