LINEAR ALGEBRA 2

DAVID TWEEDLE

These notes will serve as reference for Math 3273. The notes follow
[Ax115] and |[GH17]|. Thank you for reading.

1. ROow, COLUMN, NULLSPACE, LEFT-NULLSPACE AND
RANK-NULLITY THEOREM

Let A be an n-by-m matrix with entries in a field k. You can think

of k being either R or C. A row vector is (x1,Z,...,Zp). A column
vector is
T
{5
VvV =
T
and the transpose of v is the row vector vI' = (z1,%9,...,7,). The

set of all column vectors consisting of n entries in the field k£ will be
denoted k™.

Definition 1.1. The nullspace of A, denoted null(A), is the set of all
column vectors v € k™ such that Av = 0.

Definition 1.2. The rowspace of A, denoted row(A), is defined to be
the set of all linear combinations of the rows of A.

Definition 1.3. The columnspace of A, denoted col(A), is defined to
be the set of all linear combinations of the columns of A.

Definition 1.4. The left-nullspace of A, denoted null(AT), is defined
to be the set of all vectors y such that yZA = 07.

Proposition 1.5. Suppose A and B are both m-by-n matrices and €

is an elementary row operation. Suppose also that A = B and I < E.
Then B = FA.

Theorem 1.6. Let A be an m-by-n matriz with entries in the field

k. Then there exists an invertible matriz P and a reduced row-echelon
matriz R such that A = PR.
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Definition 1.7. The nullity of a matrix A, denoted nullity(A), is de-
fined to be the dimension of the nullspace of A.

The rank of A, denoted rank(A), is defined to be the dimension of
the row space of A.

Theorem 1.8. Let A be an m-by-n matriz. Then
rank(A) + nullity(A) = n.

2. DIRECT SUMS, BASIS, DIMENSION

Definition 2.1. Let U and W be subspaces of a vector space V. Sup-
pose

o) U+ W =V

by UNW = 0.
Then we say that V' is the direct sum of U and W and write V = U®W.

Definition 2.2. Let S C V. A linear combination of vectors from S
is a vector v such that

n
V = Z C;V;
=

where vi,...,v, € S and ¢y,¢o,...,¢c, € k.
The span of S, denoted span(.S), is defined to be the set of all linear
combinations of vectors from S.

Definition 2.3. Suppose that vq,...,v, is a list of vectors from V.
Consider the equation

n
Z C;V; = 0.
=1

The trivial solution is¢; = cg =---=¢, = 0.

The list of vectors is called linearly independent if the only solution
to the equation is the trivial solution. Otherwise, the list is called
linearly dependent.

Definition 2.4. Let S be a set of vectors. Then S is called linearly
dependent if for any positive integer n > 1, any list of n distinct vectors
from S is linearly independent.

Otherwise, S is called linearly dependent.

Definition 2.5. If v{,vs,...,Vv, is a list of linearly independent and
spanning vectors for V' then we say that the list vy,...,v, is a basis
for V.

The notion of an infinite basis is as follows: S is a basis for V if
span(S) = V and S is linearly independent.
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Theorem 2.6. Suppose vy,...,Vv, s a basis for V. If 3"  c;v; =
Yot idivi then ¢; =d; forallt=1,2,... n.

Proposition 2.7. Let vi,...,v, be a list of vectors in V. Suppose
v =y v with ¢; # 0 for some 1 < j < n.
a) Replacing v; with v does not change the span of the list.
b) If the list vy,..., v, is linearly independent, then it is still lin-
early independent after replacing v; with v

¢) If v ¢ span(vy,...,v,) for some u < n, then there exists j > u
with ¢; # 0
d) If v ¢ span(vy,...,v,) then vyi,...,v,, v is linearly indepen-
dent.
Theorem 2.8. Let W C V be a subspace of V. Suppose V' has a finite
basis vi,...,v,. Suppose wi,...,wi € W are linearly independent.
Then there exists Wgi1,..., Wy € W such that wy,..., W, is a basis

for W and u < n.

Definition 2.9. Let V' be a vector space with basis vq,...,v,. Then
the dimension of V', denoted dim(V), is defined to be n.

If V=0 then we write dim(V) = 0 (or check that the empty list is
linearly independent by definition, and spanning by convention).

If V' has no finite basis (equivalently, V' contains an infinite linearly
independent set), then write dim(V') = oc.

Theorem 2.10. Let V' be a vector space and U C V' a subspace. Then
there is a subspace W such that V =W & U.

Theorem 2.11. Let V' be a wvector space with subspaces Vi,...,V,.
Then the following are equivalent

o) V=VieWhe --aV,
b) every v € V can be written uniquely as v = vy +---+ v, where
v €V;

Proof. Omitted. O

3. LINEAR TRANSFORMATIONS AND MATRICES

Definition 3.1. Let V' be a vector space with basis B = vy,...,Vv,.
Let v € V. Then there are unique scalars ¢y, co, ..., ¢, such that

n
V = Z C;V;.
=l

We define the coordinate vector of v relative to B, denoted by [v]g,
to be [v]g = (c1,¢2,...,cn)T.
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Proposition 3.2. Let V be a vector space and suppose that V can be
written as the direct sum of subspaces

V=Vielhe &V,

Suppose that By = vq,..., vV, 15 a basis for Vi, By = Vi 11, ..oy Vi 40y
s a basis forVa, ..., By = Vi bogr, 141y -+« s Vigbotr, 1S @ basis for V,,.
Then BiUByU---UB,, is a basis for V', and for allv € V the coordinate
vector of v.may be written as

X1
X9

Xn

where v = vy +-- -+, is the decomposition from Theorem [2.11 where
v; € V; and x; = [vy]p, .}

Proof. Omitted. O
Proposition 3.3. Let B = vq,...,v, be a basis of a vector space V.
Then

a) forallv,w eV,
[v+w|g =[v]p+ W]z
b) forallveV andcek
lev]p = c[v]B.
Proof. Omitted. U

Definition 3.4. Let V and W be vector spaces (always over a common
field k). Let T : V' — W be a function such that

a) Tv+Vv)=T)+T() forall v,v' e V

b) T(ev) =cT(v) forallce k, veV.
Then T is called a linear transformation from V to W. If V.= W then
T :V — V is called a linear operator on V.

Definition 3.5. Let k£ be a field. An m-by-n matrix over k is an array
of mn elements of k£ arranged into m rows and n columns:

a1x1 Q2 - Aip
Q21 Q22 - A2y
Am1 Am2 - Amn

The set of all m-by-n matrices over k is denoted by £™*".
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Definition 3.6. Let T : V — W be a linear transformation. Let
B = vy,...,v, be a basis for V and B’ = wy,...,w,, be a basis for
W. For each j = 1,2,...,n write

T(V]) = Z aijwi
i=1

and then define the matrix of T relative to the bases B and B’, denoted
B [T]B, by

a;x Q2 - Qip

21 Q22 - Q2
BT = [ay] = "

Am1 Am2 - Amn

Proposition 3.7. Let T : V. — W be a linear transformation. Let
B=vy,...,v, be a basis for V and C =wq,...,W,,.
Then for allv eV

[T(V)le =c [T1s[V]s

Proof. Omitted. O

Definition 3.8. If A is an m-by-n matrix over a field &, define a linear
transformation 74 : k™ — k™ by the rule

Ta(v) = Av
for all v € k.
Definition 3.9. Let V' be a vector space. Define the identity function,
denoted Iy (or just I if V' is understood), by the rule
Iy(v)=vforalvelV.

Clearly, Iy, is a linear transformation.

Definition 3.10. Let n > 1 be an integer and let k£ be a field.

For each i = 1,2,...,n define the vector e; € k™ to be a column
vector with a 1 in the i-th row and 0 everywhere else.

Then B =ey,...,e, is called the standard basis of k".

Define the identity matrix to be the n-by-n matrix I such that

In other words, [ is the n-by-n matrix with 1’s along the diagonal and
0’s everywhere else.
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4. INVERTIBILITY OF MATRICES, AND DETERMINANTS
Definition 4.1. Let 7" : V — W and S : U — V be two linear
transformations. Define T'0 S : U — W by the rule

(T'oS)(u) =T(S(u)) for allu e U.

Check that 7o S is a linear transformation.
Then check that the function

O: LU,V)— LUW)
defined by ®(S) = T'S is a linear transformation.
Similarly for ¥(7") = T'S where
U L(V,W) — L(UW).

Definition 4.2. Let T : V' — W be a linear transformation. If there is
a linear transformation S : W — V such that ST = Iy, and T'S = Iy,
then T is called invertible.
If T is invertible, then the inverse is unique, and we write S = 771
Furthermore, T' is invertible if and only if 7" is 1-1 and onto.

Definition 4.3. Let n > 1. Then there is a (unique) function det :
k™™ — k such that

a) det(vy,...,vij+av,---,v,) =

det(vl,..., S Vn) Fadet(vy, ..V, V)
b) det(.. vj,...):—det(...,vj,...,vi,...)
c) det(el,eQ,...,en) =N

Proposition 4.4. Let A be an n-by-n matriz. Let A;; be the matriz
obtained by deleting the i-th row and j-th column of A. Then for any
I<j<n

n

Al = (—1)a;| Ay

i—1
and for any 1 <i<mn

n

Al = (1) a;] Ayl

j=1

Proposition 4.5. Let A be an n-by-n matriz. Then
1Al = > 8g0(0)a160(1)a20(2)  * * Gnon)

gESy

Theorem 4.6. Let A be an n-by-n matriz. The following are equivalent

a) The rows of A are linearly independent/spanning/a basis for k™
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b) The columns of A are linearly independent/spanning/a basis for
k,?’L

The determinant of A is non-zero

The equation Ax = 0 has a unique solution.

For each b € k", the equation Ax = b has a unique solution
For each b € k™, the equation y' A = b” has a unique solution.
There exists an n-by-n matriz B such that AB = 1

There exists an n-by-n matriz B such that BA =1

i) A is invertible.

T8

~—

Proof. O

5. BLOCK MATRICES

Definition 5.1. Let my, mo and ni,ny be positive integers. Let M =
my1 + mse and N = nqy + no. Let Ay; be an mq-by-n; matrix, let A
be an mi-by-n, matrix, As; be an mo-by-n; matrix, and A,y be an
ma-by-ny matrix. Then the matrix

Ap | Asg
Agy | Az
is a 2-by-2 block matrix.

Proposition 5.2. We have

det ( N ) — det(A) det(C)

Proof. If A is not invertible, then both sides of the equation are 0. If
A is invertible,

(5 ) 2)-( )

But it is clear that the determinant of ( A > is det(A)~! and the

I
I A'B
0o C

factorization. O

determinant of < ) is det(C'), So we conclude the required
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Definition 5.3. In general, let my, mao, ..., m; be positive integers and
ni, N, ..., ng be positive integers and let A;; be an m;-by-n; matrix for
eachi=1,2,... kand j =1,2,...,¢. The resulting
Ap | A |- | Aw
Ag | Agp |-+ | A
A= =71 .
Apr | Az | -+ | Are

is a k-by-¢ block matrix (it is also a M-by-N matrix where M = m; +
me+---+mpand N =ny +ng+ -+ +ny.)

Try to think about under what conditions we can multiply two block
matrices.

Proposition 5.4. Suppose T : V. — W s a linear transformation.
Suppose that W =Wy eWo B ---d Wy, and V=V Vod-- -V,
Then there exists T; : V- — W; such that for v eV, T(v) = Ti(v) +
To(v) + -+ Th(v).
Furthermore, if By, ..., B, are bases for Vi, ..., V, respectively, and
Ci,...,Cp are bases for Wi, ..., Wy, respectively, and A;j; =¢, [T;|v;]5,
then the block matrixz of T is:

Ap | A |- | A
Agy | Agp |-+ | Aoy
Aml Am2 e Amn
Proof. Omitted. 0

Definition 5.5. Let Ay, ..., A, be matrices such that A; is an n;-by-n;
matrix. Let N =nq; +ny + --- 4+ n, and define the N-by-N matrix

Al o]0
0 [Ay|---] 0
AOAD A = : 2 :
010]|---|A,

6. POLYNOMIALS

Definition 6.1. Let k be a field. A polynomial with coefficients in k
is a sum

f(z) =cpz™ 4+ Cpo1z™ 1+ -tz + ¢

where cg,cq,...,c, € k.
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Theorem 6.2. The polynomial ring kx| is an infinite dimensional

vector space over k with basis 2°, xt, 2%, ... 2™, .. ..

Proof. The ring k[z] is constructed to have this property. Here is a
construction of k[z]:

a) Consider the set of sequences f : N — k (certainly a vector
space)

b) Let k[x] be the subset of those f such that f; # 0 for finitely
many 7

¢) identify 1 < (1,0,0,...), z <> (0,1,0,...) and so on

d) define the natural addition, and scalar multiplication (as well
as multiplication)

O

Definition 6.3. A monic polynomial is a polynomial of the form z" +
Cn1x" 14+ -+ iz + ¢y where n > 0. In other words, the leading
coefficient of a monic polynomial is 1.

Definition 6.4. Let f(x) = ¢,2" + -+ - 4+ 12 + ¢ with ¢, # 0. Then
define deg f(x) = n.
Notice that deg fg = deg f + deg g.

Definition 6.5. Let a,b be polynomials, and suppose a # 0. Then
there exist unique polynomials ¢, r such that

b=qa+r

such that degr < dega or r = 0.
The polynomial r is called the remainder and ¢ is called the quotient.

Proof. By induction on N = dega. If N = 0, then a is a non-zero
scalar. So b= (b/a) - a + 0 as required.

Otherwise write a = cz™ + o' with dega’ < N —1or a = 0. If
degb < dega or b = 0, then we may take ¢ =0 and r = b.

Suppose deg b > deg a. Write b = dz™*7 + lower order terms. Then
let V = b—(d/c)z’-a. Notice that b’ = dz™¥ 7+ lower order terms of b—
dzNt — (d/c)zid.

If ' = 0, then let By induction we may find ¢',7" such that & =
qa’ +r' with degr’ < dega O

Definition 6.6. Let I be a subspace of k[z]. Then [ is called an ideal
of k[z] if fI C I for all f € k[x].

Theorem 6.7. Let I be an ideal of k[x]. Suppose I # 0. Then there
exists a monic polynomial m(x) such that

I=A{f(x)-m(z) | f(x) € klz]}.
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Proof. Suppose I # 0. Let f be a monic polynomial of smallest degree
such that f € I. (here we are using the well-ordering principle, that
every non-empty subset of natural numbers has a least element).

We claim that every element of [ is a multiple of f.

Let g € I. Write g = qf + r with degr < deg f, or r = 0. We have
that g € I and qf € I as well since f € I.

Sor =g—gqf € 1. But then r = 0 (since otherwise r is an element
of I with smaller degree than f).

So g =q- f, as required. O

Definition 6.8. Let f(x),g(x) € k[x]. Suppose f(z) and g(z) are not
both zero. Then the greatest common divisor of f(x) and g(x), denoted

ged(f, g), is defined to be the monic polynomial h(z) with the largest
degree such that f(z) = q(z)h(x) and g(x) = r(x)h(x).

Theorem 6.9. Let f, g € k[z] not both zero. Let h = ged(f,g). Then
there exists polynomials a,b such that

W) = a(z)f(x) + b(z)g(x).

Proof. Let I ={a-f+b-g| a,b € k[x]}. Check that I is an ideal
of k[z]. Let h(x) be the monic generator of I. Since h € I, we have
h = af + bg for some a,b € k[z].

We now will establish that h is the ged of f,g.

Notice that f =1-f+0-¢g € I so f = ¢gh for some ¢. Similarly,
g(x) = r(x)h(z) for some r(x).

Suppose H is another polynomial which divides both f,g. Then H
divides also af + bg = h, which implies deg H < deg h as required. []

Definition 6.10. The polynomial f(z) is called reducible if f(x) =
g(x)h(z) and g, h are both non-constant polynomials.

A non-constant polynomial f(z) is called irreducible if it is not re-
ducible.

Theorem 6.11. Let f(x) € k[x] be a non-constant polynomial. Then
there are monic, irreducible polynomials py, ..., p, such that
f(x) =cpr--pa
where ¢ is the leading coefficient of f(z).
Proof. Sketch.

a) If f is irreducible we are done

b) else write f = gh each having degree strictly less than the
degree of f

¢) find a factorization of g, h
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d) for uniqueness, prove that if p is irreducible and p divides gh
then p divides g or p divides h

O

Theorem 6.12. The only irreducible polynomials in Clx] are x —a for
aeC.

Proof. C is algebraically closed. So if f(z) € C[z] is a non-constant
polynomial, f has a root in C. So if deg f > 1 it is not reducible since
we can write f(z) = (z — a)g(z) where f(a) = 0.

The only irreducible monic polynomials are x — a where a € C [

7. ALGEBRA OF LINEAR TRANSFORMATIONS

Definition 7.1. Let V and W be vector spaces. The set of all linear
transformations from V' to W is denoted by L£(V, W).

Theorem 7.2. The set of all linear transformations from V to W 1is
a vector space. The addition and scalar multiplication are defined as
follows:

(T+8)(v)=T()+S(v) forallveV
forallT,S € L(V,W) and
(cT)(v)=c-(T(v)) forallveV

Proof. Verify that T+ .S and T are both linear transformations. Verify
that the zero function 0 : V' — W defined by 0(v) = Oy for all ve V
is a linear transformation.

Let F be the set of all functions from V' — W. We claim that F
is a vector space under the above operations. Then £(V, W) will be a
vector space by the subspace test.

THe zero vector of F is the zero function 0(v) = Oy for all v e V.

The negative of g € F is the function —g defined by (—g)(v) =
—(g(v)) for all ve V.

The other six axioms can be checked (it is kind of tedious though).
If you have never tried it, then please try. O

Definition 7.3. Let V be a vector space. The set of all linear trans-
formations 7' : V' — V is denoted L(V).

We know this is a vector space over k. But in fact it is also known
to be something called a “k-algebra”. Other examples of k-algebras are
the polynomial ring k[z], and the n-by-n matrices over k.
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Definition 7.4. Suppose that A is a k-vector space. If, in addition,
there is a product

AxA— A
(A,B)— A-B
such that

a) A-(BB+C)=pAB+ AC for all A,B,C € Aand c€ k
b) (tkA+ B)-C=aAC+ BC forall A,B,C € Aand c€ k
c) there exists 1 € Asuch that 1-A=A-1=AforallAec A
d) A(BC) = (AB)C for all A,B,C € A.

then we say that A is a k-algebra.
Theorem 7.5. The space L(V) is a k-algebra.
Proof. Omitted. U

Theorem 7.6. Let V be a vector space with basis B, and W a vector
space with basis B'. Suppose n = dim(V) and m = dim(W). Then
define a map

U LV, W) — k™"
by the rule
U(T) =p [T]5

forall T € L(V,W).
Then W is an isomorphism of vector spaces.
Now, suppose that V=W and B = B’ so that

U(T) =5 [T5
forallT :V = V| then
U L(V)— k™"

is an isomorphism of k-algebras (in particular, V(c- Iy) = c¢- I, and

V(AB) =V (A)¥(B)).
Proof. Try it. O

8. INNER PRODUCT SPACES

In this chapter especially, we will take £k = C or k = R. Our proto-
type inner product for real vector spaces is the dot product (v,u) =
" wvu; = viu. In general, we have the following definition.
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Definition 8.1. Let V be a real vector space. A symmetric inner
product on V' is a function

(,):VxV SR
such that
a) (v,w) =(w,v) for all v,w € V.
b) (av+w,u) =a(v,u) + (w,u) for all u,v,w € Vand a € R
¢) (v,v) >0 for all v € V with equality if and only if v = 0.

If (-,-) is a symmetric inner product on V then (V, (-,-)) is called a
real inner product space.

We can define a similar notion for complex vector spaces, but we have to
be careful with the symmetry. The prototypical complex inner product
space is C" with inner product (v,u) = ¥, Tu; = v*u where v*
means the conjugate transpose of v. In general, we have the following
definition.

Definition 8.2. Let V' be a complex vector space. A hermitian inner
product on V' is a function

(,):VxV—=>C
such that
a) (v,w) = (w,v) for all v,w € V.
b) (av+w,u) =a(v,u) + (w,u) forall u,v,we Vand a € C
¢) (v,v) >0 for all v € V with equality if and only if v = 0.

If (-,-) is an hermitian inner product on V then (V, (-, -)) is called a
complex inner product space.

Remark 8.3. From now on, whenever we say “inner product space”, un-
less otherwise noted, we mean “(real or complex) inner product space”.

Definition 8.4. Let u and v be two vectors in an inner product space.
We say that u and v are orthogonal if (v,u) = 0.

If S, T are non-empty subsets of V', then we say that S and T are
orthogonal if (s,t) =0 foralls € S and t € T.

Proposition 8.5. Let V' be a (real or complex) inner product space.
Then

a) (0,v) =0 forallveV
b) if (u,v) =0 forallv €V thenu=0.

Proof. Omitted. 0
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Definition 8.6. Let V be a (real or complex) inner product space. For
each v € V, define the norm of v, denoted by ||v||, by

Vil = v/ (v, v)

Proposition 8.7. Let V' be an inner product space. Then
a) |Jvecv|| > 0 with equality if and only if v.=10
b) llev]l = lell[v]
¢) [[v]]* = (v, v)
d) if (u,v) =0 then [[u+v|* = |lul* + ||v|?
e) [[v+ull® + [lv—ul* =2|v|* + 2[u?

Proof. Omitted. O

Definition 8.8. Let u be a non-zero vector. Let v € V. We define
the projection of v onto u to be the vector

(v,u) < u> u
X = —u=(V,— )
[l [[al[ /" [ull

Proposition 8.9. Let u be a non-zero vector. Let x = h‘;hlgu be the
projection of v onto u. Then v =x+ (v —Xx) is a decomposition of v

into two orthogonal vectors.

Proof. Omitted. O

Theorem 8.10. Let V' be a (real or complex) inner product space.
Then

[(v, w)| < [[v][[[w]]
with equality if and only if v,w are linearly dependent.

Proof. The theorem is true when either v = 0 or w = 0. Now, write
v = x + (v — x) as in Proposition [8.9) Then since x is orthogonal to
v — X, we have

VI = Tl + v = x|* = |||

Sy
’2

[{v, W)

e ™!

Iwi”

Now, if the above inequality is an equality then x = v so w is in the
span of v.
Conversely, if w = cv check that [(w, v)| = |c|||v|* = ||v]|[|w]. O
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Corollary 8.11. We have
v+l < [[v] + [lu]

Proof. Omitted. O
Definition 8.12. Let vy,...,v, be non-zero vectors. The list
Vi, ...,V, is called mutually orthogonal if

(vi,vj) =0forall 1 <i,j <n with i # j.

If the list vy, ..., v, is mutually orthogonal, it is called orthonormal
if in addition (v;,v;) =1 foralli=1,2,...,n.

If the list wvq,...,v, of orthonormal vectors is such that
span(vy,...,v,) = V, then vq,...,v, is called an orthonormal basis
for V.

Proposition 8.13. Let vy,...,v, be a list of non-zero, orthonormal

vectors. Then if v.=civi + -+ ¢V, we have

1 =(vi,V), ca =(va,V), ..., ¢, = (Vy, V).
In particular, a list of orthonormal vectors is linearly independent.
Proof. Consider

(vi,v) = (vi,c1V1 + -+ V)

= c1(vy, V1) + (v, Vo) + - -+ + (v, Vi)

:Cl

since (vi,vy) = 1 and (vy,vy) = 0 and so on. The calculations for

C9,C3,...,C, are similar. O
Definition 8.14. Let uy,...,u, be a list of orthonormal vectors and
U = span(uy,...,u,). The orthogonal projection of a vector v onto U

is defined to be Py(v) where

n

Py(v) =) (u;, v)u,.

i=1
The orthogonal projection Py : V' — V satisfies
P2 = IFy
and
Py(V)=U
Theorem 8.15. Let vy, ..., v, be a basis for V. Then there orthornor-
mal vectors uy, ..., u, such that

a) span(vy,...,v;) =span(uy,...,w;) for each i =1,2,...,n
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b) Letting U; = span(uy,...,u;), set yir1 = Vi1 — Py, (viy1) and

. Yit1
then Wit1 = 13y

Proof. Omitted. O

Definition 8.16. A linear functional on V' is a linear transformation
f:V — k where k is the field of scalars of V.

The set of all linear functionals on V' is a vector space, called the
dual of V| denoted V¥ or L(V, k).

If V is an inner product space and u is a fixed vector, then we can
construct a linear functional by defining f(v) = (u, v).

Theorem 8.17. Let V' be a finite dimensional inner product space.
There is a 1-1 correspondence between linear functionals and vectors of

V.
Proof. For v € V define f, : V' — k by the rule
fo(w) = (v, w).

THe properties of inner product spaces tell us that f, is linear.
Furthermore, fyiew = fv + ¢fw. So the map v — f, is a linear
transformation

vV = VV.

Let f: V — k be a linear transformation (in other words, f € V).
If f(w) =0 for all w then f = fo.

Else there exists w € V such that f(w) # 0. By the rank-nullity
theorem (Theorem , if U is the nullspace of f, U has dimension
n — 1. Let u be a unit vector spanning the orthogonal complement of
U. Then calculate ¢ = f(u) and notice that f = f.,. O

Remark 8.18. There is a Riesz Representation Theorem for complete
inner product spaces (a.k.a. Hilbert spaces).

Proposition 8.19. Let VW be two inner product spaces with or-
thonormal bases B for V and B’ for W. LetT : V. — W. Then
the matriz of T relative to B and B’ is given by the matriz with i, j-th
entry (w;, T'(v;)).

Proof. To compute the matrix of T', we compute the coordinates of
T'(v;) relative to B’, the i-th coordinate is given by

(wi, T'(v;))
by Proposition [8.13] O
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Definition 8.20. Let T : V' — W be a linear transformation. A linear
transformation S : W — V is called an adjoint of T if
(w,T(v)) =(T"(w),v)

foralwe W and ve V.
The matrix of the adjoint is the conjugate transpose of the matrix.

Definition 8.21. Let 7' : V — V be a linear transformation and V'
are inner product spaces. Then T is called an isometry if

1TVl = [Ivll
for all v e V.

Proposition 8.22. Let T : V. — V and S : 'V — V be isometries.
Then ST is an isometry. T is 1-1. If V is finite-dimensional then T
is invertible and T~ is an isometry.

Proof. Notice
ST = ISTODI = [TV = (vl

since both S and 7" are isometries.

If T(v) =0 then 0 = ||T(v)|| = ||v]| so v=0. So T is 1-1.

By the rank-nullity theorem, if 7" is 1-1 and V' is finite-dimensional,
then T is invertible. Writing T-'w = v if and only if T'(v) = w we
have

vl = [T)]
1T (W)l = [[wl]
0

Proposition 8.23. Let T : V — V be a linear transformation. Then
(T'(v), T(u)) = (v,u) for all v,a € V if and only if T is an isometry.

Proof. Suppose T' is an isometry. There is a trick to proving that
(T'(v),T(u)) = (v,u). It is to expand

(T(v+u), T(v+u))

and compare to (v £ u, v+ u).
Of course, if (T'(v),T(u)) = (v,u) then T is an isometry because
you can put v = u. U

Proposition 8.24. Let T : V. — V where V' is finite-dimensional.
Then T is an isometry if and only if T*T = 1I.
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Proof. We have

(w,v) = (T'(0), T(v)) = (u, T"T(v))
Subtracting (u,v) from both sides:

0= (u,T"Tv —v)

for all v,u € V. Therefore, T*Tv =v for all ve V so T*T = I.
If T*T = I then

(v,u) = (v,T"Tu) = (Tv,Tu)
proving that T is unitary. 0

Definition 8.25. Let U be an n-by-n matrix. Then U is called unitary
it U*U = 1.

By Proposition [8.24] and Proposition [8.19, a unitary matrix is the
matrix representation of an isometry relative to an orthonormal basis,
and it is also an isometry k™ — k™.

A unitary matrix with real entries, is called an orthogonal matrix.
Real orthogonal matrices satisfy Q7Q = I.

Proposition 8.26. Let U,V be n-by-n matrices and W and m-by-m
matriz. THen

a) If U,V are unitary then so is UV
b) If U and W is unitary then so is

U 0
vow- (U 0)

¢) If U is unitary then |det(U)| = 1.
Proof. Omitted. 0

Theorem 8.27. Let U be an n-by-n matrixz. The following are equiv-
alent.
a) U is unitary
b) UT, U* are unitary
¢) the columns of U form an orthonormal basis for k™ (remember,
k = R or C depending on if we have a real or complex inner
product space)
d) the rows of U form an orthonormal basis

Proof. Omitted. O

Definition 8.28. A rank 1 projection matrix is a matrix P = uu*
where u is a non-zero unit vector (in other words, ||ul| = 1.

We have that Py = P for U = span(u) in the terminology of Theo-
rem
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Proposition 8.29. Let P be a rank 1 projection matrix, corresponding
to unit vector u.

a) the columnspace of P is span(u)
b) If (v,u) =0 then Py(v) =0

¢) If v.=cu then Py(v) =v.

d) P: =Dy

6) P[% = PU

Proof. We have P(v) = uu*v = u(u, v) so the columnspace (in other
words, the range of P) is equal to the span of u.

For part b), use the above formula again.

For part ¢) P(cu) = uu*(cu) = cu

Compute P}, = (uu*)* = uu*

Similarly, P} = uu*uu* = uu* since u*u = 1. O

Definition 8.30. Let w # 0. Let u = ﬁ with rank 1 projection

P,=uu" = W:N
W W
The Householder matrix corresponding to w is defined to be
Uy =1-2P,

with corresponding Householder transformation

X — x — 2(x,u)u

Theorem 8.31. Let U be a Householder matriz. ThenU* =U = U1,
If U is a real Householder matrixz then UT = U = U~".

Proof.
UU =(1-2P,)* =1—4P, +4P> =1
So U is unitary, U* = U since P;; = P,, and so
U=U"=U""
If U is real then UT = U* so the second part follows. O

Theorem 8.32. Let x andy be vectors in R™. Suppose 0 # ||x|| = ||y]|-
Let

_J 1 if{xy) <0
773 41 if (x,y) >0

and let w =y — ox. Then oUy, is real orthogonal and cUgx =y.

Proof. We just need to check that cUyx = y. Let w, = x —y and
w_ = x +y. Then notice that (w,,w_) = ||x]|* — ||y||* = 0.
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So
Uy Wi =wy
Uy W_ = —wW_
UW+W+ = —W+
Uy W_ =wW_

Therefore, writing x = (1/2)w, + (1/2)w_,
Uw_x=(1/2)w, = (1/2)w_ =y,
and similarly,
Up,x=-y
Accounting for the definition of o and w proves the theorem. 0

Theorem 8.33. Let x,y € C" and suppose ||x|| = ||y|| # 0. Let

O':{ - 1 if<X7Y>:Oa
—(x,y)/I{x, ¥y if (x,y) #0, ’

and let w =y — ox. Then oUs, is unitary and cUyX =y.
Proof. Omitted (but similar to the real case). O

Theorem 8.34. Let A be an m-by-n matriz and suppose that m > n.
There exists an m-by-m unitary matrix V and upper triangular n-by-n
matriz R whose diagonal entries are real and non-negative, such that

a=v( 0

IfV =(Q Q') in which @ contains the first n columns of V', then Q
has orthonormal columns and A = QR.

If rank(A) = n, then the factors QQ and R are unique and R has
positive diagonal entries.

Proof. Let a; be the first column of A. Let ¢ = ||a;||. Use a Householder
matrix U; such that

C .
Uid = ( 0 A )
where A’ is an m — 1-by-n — 1 matrix.
Roughly, we then apply induction. 0



LINEAR ALGEBRA 2 21

9. DIAGONALIZATION AND THE CAYLEY-HAMILTON THEOREM

Definition 9.1. Let A be an n-by-n matrix. Then A\ is called an
eigenvalue for A if there exists 0 # v € C" such that

Av = \v.

If v # 0 and Av = \v for some A € C, then v is called an eigenvector
for A.
The pair (A, v) such that Av = Av and v # 0 is called an eigenpair.

Theorem 9.2. Let A be an n-by-n matriz. Let X € C. The following
are equivalent

a) A is an eigenvalue for A

b) X is an eigenvalue for AT

¢) Av = \v for some 0 #v € C"

d) (A= AI)v =0 has a non-trivial solution
e) A — X\ is not invertible

) AT — X is not invertible

Proof. Omitted. O

Definition 9.3. Let A be an n-by-n matrix. Then p4(z) = det(z] —
A)=2"+¢, 12" 1+ -+ 12+ ¢o. Then p4 is a monic polynomial of
degree n, called the characteristic polynomial.

Each coefficient of p4 is a polynomial in the entries of A, ¢,_; =
—tr(A) and ¢y = (—1)" det A.

Proof. Omitted. 0

Proposition 9.4. The characteristic polynomial of

A B
0 C
IS PAPB.

Proof. Compute
A—=zI B
det( 0 C_z]>:det(A—zI)det(C—z[)

by Proposition [5.2] O
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Definition 9.5. Let £k = C or R. We say a matrix A is diagonalizable
over k if there is an invertible matrix P and a diagonal matrix D (with
entries in k) such that

A= PDpP!

We say that a complex matrix A is unitarily diagonalizable if there
is a unitary matrix U and diagonal D such that

A=UDU"

We say that a real matrix A is orthogonally diagonalizable if there is
an orthogonal matrix ) and diagonal matrix D with real entries such
that

A=QDQT.
Theorem 9.6. Let &k = C or R.

A matriz is diagonalizable over k if and only if there is a basis of k™
consisting of eigenvectors for A.

Proof. Suppose A = PDP~'. Then AP = PD. The j-th column of
the left hand side is

Av;

J

where v; is the j-th column of P. The j-th column of the right hand
side is A;v; so each column of P is an eigenvector. Since P is invertible,
there is a basis of k™ of eigenvectors.

Each argument may be reversed as well. U

Theorem 9.7. Let A be an n-by-n matriz. Then there is a monic
polynomial p € C[z], with degp < n* such that p(A) = 0.

Proof. The dimension of the vector space of n-by-n matrices is n%. So
1,A,A2, ... A" are linearly independent which is enough to guarantee
the existence of such polynomial. U

Theorem 9.8. Let A be an n-by-n matriz. Then A has an eigenvalue

(in C).

Proof. Let p(z) be a monic polynomial with p(A) = 0. Since C is
algebraically closed, we can write

p(x) = (x —a)(x —ag) - (x — an).
So
(A—a1)(A—ag) - (A—a,) =0.
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If A—a; is not invertible then a; is an eigenvalue. If A— a4 is invertible
then
(A-&z)(A—an) :O,

and we proceed similarly until we find that some a; is an eigenvalue of
A. O

Theorem 9.9. Let A be an n-by-n matriz, with eigenpair (A, v) such
that ||v|| = 1. Then there is a unitary matric

U=(vU)
and an upper triangular matrix T such that
A=U0TU"
and t11 = X and ty1,t29, ..., ty, are the eigenvalues of A.

Furthermore, if A is a real matrix with real eigenvalues Ay, ..., \,
and v has real entries, then there exists an orthogonal matriz QQ = (vQ')
such that A = QTQT (therefore, also T has real entries as well with
tii = \; for each ).

Proof. We will prove in the case that A is real. We proceed by induction
on n. So suppose that every real matrix with real eigenvalues and real
eigenvector x which is a unit vector, then we can write

A=QTQ"
where the first column of @) is x and T is upper triangular.
Let A be a real matrix with real eigenvalues. Let x be an unit
eigenvector. Then Theorem [8.32] there is a unitary matrix U with first
column equal to x (U maps e; to x). Write U = (x U’). Then

AU = (Ax AU")

Since the columns of U are orthonormal U'"'x = 0,s0
T

X A xT AU’ A
urau = ( i ) (Aix AU") = ( MUTx UTAUT ) = ( 0 UTAU ) |
By induction A’ = U7 AU’ can also be written as VIT'V7.
The eigenvalues of A are Aq,..., A, so the eigenvalues of A’ must be
A2y A
Now, let Vi1 = 1@ V and let U; = VU is a unitary matrix, and a
computation confirms that Ul AU, is an upper-triangular matrix. [

Theorem 9.10. Let A be an n-by-n matriz and p(x) its characteristic
polynoimal. Then p(A) = 0.

Proof. Omitted. 0
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Definition 9.11. Let A be an n-by-n matrix. Then A is called normal
if AA* = A*A.

Theorem 9.12. Let A be an n-by-n matriz. The following are equiv-
alent.

a) A is normal (Definition
b) A is unitarily diagonalizable (Definition[9.5)

¢) C™ has an orthonormal basis consisting of eigenvectors of A
Now, let A be a real n-by-n matriz. The following are equivalent:

a) A is symmetric

b) A is real orthogonally diagonalizable (there exists an orthogonal
matriz Q such that A = QDQT for some diagonal D)

¢) R™ has an orthonormal basis consisting of eigenvectors of A

Proof. Omitted. 0

10. CANONICAL FORMS

Definition 10.1. Let 7' : V — V be a linear operator. Let U be a
subspace of V. We say that U is T-invariant if 7(U) C U.

If U is T-invariant, then the restriction of T' to U, Ty, is a linear
operator on U.

Proposition 10.2. Suppose T' : V. — V is a linear transformation.
Suppose V.=U & W and U 1is T-invariant. Let B = uy,...,u; be a
basis for U and B’ = w1,...,w; be a basis for W. Then BU B’ is a
basis for V' and the matriz of T relative to BUB' (see Proposz'tz’on

A | Arg
0 | Ay

If W is also T-invariant, then the matriz of T is of the form

AH 0
Proof. Let C = BU B’. The columns of the matrix of T" correspond to

[T(w)lo, [T(w)le, ..., [T(ap)lo, [T(Wilo, ..., [T(we)lo-

But for v € V, Proposition or Proposition [5.4) we have that v =
u + w and

Vle = ( [[‘}Vlﬁ/ > .
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Now, it remains to note that for u; € B, T'(u;) € U, so T'(u;) =u+0
according to Theorem [2.11] This implies that the matrix of T is of the

form
Ap | A
Ag | Az )
If W is also T-invariant, a similar argument applies. In this case,
our notation Definition [5.5 applies and we write the matrix of T" as

Ay @ Agp
where Aj; is the matrix of Ty : U — U and Asy is the matrix of
Tw:W —W. O

Proposition 10.3. Let p(x) € k[z]| be a polynomial. Let T : V — V
be a linear operator. Let U be a T-invariant subspace. Then p(T)(U)
is T-invariant. Also (p(T))""(U) = {v € V | p(T)(v) € U} is T-
tnvariant.

In particular, ker(p(T')) and p(T)(V') are T-invariant subspaces.

Proof. Omitted. 0

Proposition 10.4. Let W = ker(T — \) and let U CW. Then U is a
T-invariant subspace.

Proof. Omitted. 0

Lemma 10.5. Suppose T' : V. — V is a linear operator. Suppose
f(T) =0. Suppose f(x) = g(x)h(z) and gcd(g,h) = 1. Then

V =ker(g(T)) @ ker(h(T)).
Proof. Since ged(g,h) = 1 write 1 = ag + bh for some polynomials
a,b € k[z] (Theorem [6.9). Let v € V. Then write
v=1v=a(T)g(T)v+b(T)h(T)v
and let vi = b(T)h(T)v and let vo = a(T)g(T)v. Notice that v; €
ker(g(7")) and vq € ker(h(7)). So V = ker(g(T')) + ker(h(T)) but we
have to show that the sum is a direct sum (Definition
So suppose v € ker(g(T")) Nker(h(7T)). Then write
v=a(T)g(T)v+bT)h(T)v=0+0=0
since g(T)v = h(T)v = 0.
So the sum is a direct sum as required. 0

Theorem 10.6. Let pr(z) = (z— A\)™ -+ (2 — \p)™ be the factoriza-
tion of pr over the complexr numbers. Then

V =ker(T — \)™ @ ker(T — \y)™ @ --- @ ker(T — \p)™*
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Proof. Let fi(z) = (2 — Xg)™ -+ (2 — A\p)™ and let Vi = ker(f1(7)).
Then ged((x — A)™, (x — Xg)™2, ..., (x — A\g)™) = 1. Therefore, by
Lemma [10.5

V =ker(T — A\)™ @ ker(f1(T)).

Now, let T7 : Vi — Vj be the restriction of T to V.
To apply induction we need for fi(z) to be the characteristic poly-
nomial of 77. We have V; = (T"— A;)™ (V). The matrix of T is

A0

0 B
Now, A is an m;-by-m; matrix whose only eigenvalue is ;. So the
characteristic polynomial of A is (x — A;)™. The characteristic poly-
nomial of A @ B is the product of the characteristic polynomials of

A and B. So the characteristic polynomial of B must be fi(z). By
induction,

Vi=ker(T — X)™ @ - @ker(T — A\p)™*
and so
V=ker(T— )™ @V =ker(T —\)™ @ Dker(T — \p)™

O

Definition 10.7. A matrix A is called nilpotent if A™ = 0 for some
n>1.

Proposition 10.8. Let A be a square matriz. Then Spec A = {\} if
and only if A — X is nilpotent.

Proof. Let B=A— \.

If B* =0 and Bv = Av then 0 = B"v = \"v so A = 0.

On the other hand, if Spec B = {0}, then the characteristic polyno-
mial of B must be 2" and then apply the Cayley-Hamilton Theorem

(Theorem [9.10)). O

Theorem 10.9. Let A be an n-by-n matriz, with characteristic polyno-
mial p(x) and minimal polynomial m(x). The following are equivalent.
a) A is m'lpotent (A* =0 for some k > 1)
b) p(x) =
c) m(x )—xﬁ for some1<j<n
d) A has no non-zero eigenvalues

) n

o
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Proof. Omitted. O

Definition 10.10. Let A € C and k¥ > 1. A Jordan block of size k
with eigenvalue \ is

Al
Al
Jk(>\) — o,
A1
1
We will now work with nilpotent operators for a little bit.

Definition 10.11. Let 7" : V — V. Let v € V and suppose
that T%(v) = 0 and T*'(v) # 0. Then the subspace U =
span(v, T(v), ..., T™ (v) is called a cyclic subspace of V. The vector
v is called a cyclic vector. We will write U = C(v) to mean that U is
a cyclic subspace with cyclic vector v.

Proposition 10.12. Suppose U = C(v). Then v,T(v),..., T™ 1 (v)
is a basis for U where T™(v) =0 and T™ (v) # 0.
Proof. Let B =v,T(v),..., T !(v). By definition of cyclic subspace,
B spans U. Suppose for some 0 < j <m — 1, we have ¢; # 0 and
T’V + ;TN (V) + -+ e T (v) = 0.
Then apply 7™ 77! to the equation, and using that T™v = 0, we have
c;T" 'v=0
and since T 'v # 0, we conclude that ¢; = 0. This is a contradiction.
This argument tells us that if
co+alv+---+ 1T v =0
then in the above expression ¢y = 0, ¢; = 0, and so on. So B is linearly

indendent and so a basis for U. ]

Proposition 10.13. Suppose T : V. — V is nilpotent. Then V is the
direct sum of cyclic subspaces.

Proof. By induction on dim V' (dim V' =1 is clear).

Suppose that the theorem is true for all W with dim W < dim V.

Let W =T(V). THen dim W < dim V' by the rank-nullity theorem
(since T is nilpotent, its nullspace is non-trivial).

So write W = C(wy) @ --- & C(wy,).

Then write T'(v;) = w;. Let W/ = C(vy) +--- + C(v,). We claim
that W’ is the direct sum

W =C(vi) @ ®C(va).
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Consider
pl(T)Vl + +pn(T)Vn =0
We must show that p;(T)v; =0 for all 1 <i <n.
First, suppose that p;(0) # 0 for some 7. Then ged(p;, ™) = 1, so
there exists a,b € k[x] such that
ap; + bx™ =1
Now
vi = (a(T)pi(T) + b(T)T™ )v; = a(T)pi(T)v;
in particular
vi =) a(T)p;(T)v;
J#i
proving that v; = 0 which is a contradiction since then w; = T'(v;) = 0
so the sum for W = T'(V) is not direct. Therefore, p;(0) = 0 for all 1.
Therefore p;(z) = xq;(x) for some polynomials ¢;. In particular, each
vector p;(T)v; = ¢;(T)w; and the sum for W is a direct sum proving
that ¢;(T)w; = 0, so the sum for W’ is a direct sum.
Finally, W' +ker(T) = V. So find U C ker(T) such that WU =V

and finish the proof by noting that any subspace of ker(T) is a direct
sum of cyclic subspaces. 0

Definition 10.14. A Jordan matrix is defined to be a direct sum of
Jordan blocks:

J = Jnl (Al) S Jn2()‘2) S---D Jnk<)\k)
Definition 10.15. A nilpotent Jordan block is a matrix

fo= =] 00 0

Definition 10.16. A nilpotent Jordan matrix is a direct sum of nilpo-
tent Jordan blocks

Joy 0 - 0

0 J,, -+ 0

Jnl@an@"'@Jnk: : : o :
0 0 - Jy

Lemma 10.17. Let J, = (0 e, --- e,-1). Let 1 <p <n—1. Then
JP=(0 e e ey ,). And J" =0.
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In particular, rank(J?) =n —p for all p < n.
In particular, rank(J?) — rank(JP~!) =1 for p < n and 0 for p > n.

Proof. Notice that J,e;;,; =e; fori <n —1. O

Theorem 10.18. Let V' be a finite-dimensional vector space. Let T :
V — V be a linear operator. Suppose that pr(z) = (z — A\)™ -+ (z —
An)™ is the characteristic polynomial of T. Then the Jordan normal
form of T exists and is unique.

Proof. Apply Theorem Then apply Proposition [10.13] That

proves existence.
Uniqueness is an exercise. O

11. SINGULAR VALUE DECOMPOSITION AND APPLICATIONS

Definition 11.1. Let P be a symmetric (if P is real) or Hermitian
(if P has complex entries) n-by-n matrix. Let the eigenvalues of P be
A1, A9y ..oy Ap. Then P is called positive semi-definite if Ay > 0, Ay > 0,
ey Ap 2> 0.

The symmetric matrix P is called positive definite if all the eigen-
values are positive.

Proposition 11.2. Let P be a (symmetric or Hermitian) n-by-n ma-
triz. The following are equivalent

a) P is positive semi-definite
b) x*Px >0 for all x € C™ (if P is Hermitian)or for all x € R™
if P is symmetric.

Proof. Omitted. 0
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Definition 11.3. Let P be a positive semi-definite matrix. Then there
exists a unitary matrix U such that

P=UDU*
and
A1
D= A
An
where A{,...,\, are all non-negative. Define the square root of P,

denoted P'/2, by

e
P =1 e , U

vV

Definition 11.4. Let A be an m-by-n complex matrix. Let r =
rank(A). Let ¢ = min(m,n). Then A*A is a positive semi-definite
n-by-n matrix, with r positive eigenvalues. Then let the positive eigen-
values of (A*A)Y/2 be o0, > 05 > -+ > 0, and define

Org1 = Opgp =+ =04, =0.
Then the singular values of A are defined to be

0-120_22"'ZUT>OZUT+1:"':Uq.

Theorem 11.5. Let A be an m-by-n matriz, let r = rank(A), let
q = min(m,n) and let

01203220

be the singular values of A and let ¢ € C. Then

a) o%,...,0% are the positive eigenvalues of A*A and AA*

b) I, =0?=tr A*A = tr AA*
c) A, A*, AT, and A have the same singular values
d) The singular values of cA are |c|oy, |c|oa, ..., |c|o,.

Proof. 1t is clear that the positive eigenvalues of A*A are the squares of
the positive eigenvalues of (A*A)/2. The non-zero eigenvalues of AA*
and A*A are the same.

tr A*A =Y o}

=1
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and tr A*A = tr AA* by cyclicity of trace.
The non-zero eigenvalues of A*A and AA* are the same. But

T4 = ATA AL = AAT
which means A, A, AT A* have the same singular values. O

Theorem 11.6. Let A be a non-zero m-by-n matriz Let r = rank(A).
Let 0y > 09 > -+ -0, > 0 be the non-zero singular values of A. Define

01

02
Xr =

o

Then there is an n-by-n unitary matriz V' and m-by-m unitary matrix
W such that

A=VXW*
i which
o Zr Orxn—r
E - < Omfrxr Omfrxnfr >

is the same size as A.

Proof. Suppose m > n. Write A*A = W DW* with unitary W. Then
DY? =%, ®0,_, Let

01
02

so that DV2E-' =1, ®0,_,.
Now, let B = AW E~! and consider

B*B = (AWE H*(AWE™)
= ("Y' WA AWE™!
= E'WWDW*WE™!
_ E—1D1/2D1/2E—1
=1, 30,
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Write B = (V, B’) so that V, is the first r columns of B. NOtice
B B - B,*‘/T (B/>*B/

So the columns of V. are orthonormal, so they may be extended to
an orthonormal basis of C™, so let V' = (V,. V') be a unitary matrix.
On the other hand, (B’)*B’ = 0 means that each columns of B’ is zero,
so B’ is zero.

Now, let us compare AW and V.

=1 ®0,_,.

ET‘ 07‘ Xn—r

0m—r><r 0m—'r’><n—7'

Vo=V, V) ( ) = (V2Zs Omxn—r)-

AW = BE = (V;“ 0)(21" S [nfr) = (‘/;‘Er Omxn—r

as required. 0

12. QUADRIC SURFACES

Definition 12.1. A quadric surface is a surface in R? with an equation
of the form

ar? +bxy +cxz+dyl +eyz+ f2R+gr+hy+iz+1=0,

where a,b,c,d e, f,g,h,7 € R and at least one of a,b,c,d, e, f is non-
zero. (A quadric surface is just a surface defined by a degree 2 equation
inx,y, 2).

Definition 12.2. A quadratic form (for our purposes) is a function
q : R" — R such that ¢(x) = xT Ax for a symmetric matrix A.

Definition 12.3. Let S = {ax?® +bxy + --- + iz +1 = 0} be a quadric
surface. Define a quadratic form gs(z,y,2,w) = ax® + bry + crz +
dy? + eyz + f2° + grw + hyw + izw + lw? with associated matrix

a b/2 ¢/2 g/2
b/2 d e/2 h/2
c/2 e/2 f i/2
g/2 h/2 i/2 1

Definition 12.4. Let S be a quadric surface, with quadratic form
gs and matrix Ag. Then Ag = QDQT since Ag is symmetric. Let
A1, A2, A3, A4 be the eigenvalues of Ag.

Then if one or more A\; = 0 then S is called degenerate.

As =

The goal is now to classify all the quadric surfaces. We will do this in
class if we have time.
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