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1. Divisibility and primes
Definition 1.1. Let d ̸= 0 and n be integers. If there exists an integer
k such that n = kd then we say that d divides n and we write d|n. We
also say “d is a divisor of n”, “d is a factor of n”, “n is a multiple of
d”, “n is divisible by d” to mean that d divides n.

Principle of Mathematical Induction. Let Q be a subset of N =
{1, 2, 3, . . . , n, . . .}. If

a) 1 ∈ Q and
b) For all n ≥ 1, if n ∈ Q then n + 1 ∈ Q

then Q = {1, 2, 3, . . . , n, . . .}.

There is also the well-ordering principle.

Well-ordering Principle. Suppose that S is a non-empty subset of
N. Then S has a least element.

Date: September 5, 2021.
1



Proposition 1.2 (Division Algorithm). Let a and b be integers with
a ̸= 0. Then there exists unique integers q and r such that 0 ≤ r < |a|
and b = qa + r.

Proof. Let a, b be given with a ̸= 0. Let S = {b−qa | q ∈ Z, b−qa ≥ 0}.
Then S is non-empty (do you see why?). So S has a least element
R ≥ 0. If R ≥ |a|, then R − |a| ∈ S as well and R − |a| < R a
contradiction. So 0 ≤ R < |a|, as required.

Uniqueness is omitted. □

Definition 1.3. Let p ≥ 2 be an integer. Then p is called a prime
number if its only positive divisors are 1, p.

Otherwise, p is called a composite number.
The primes are P = {2, 3, 5, 7, 11, . . .} and the composites are C =
{4, 6, 8, 9, 10, 12, . . .}.

Theorem 1.4. Every integer n > 1 is a product of primes.

Proof. Let

S = {n ≥ 2|n cannot be written as a product of primes}.

Let m be the least element of S. Then m > 2 since 2 is prime. So
m is composite (otherwise, m is prime itself). Write m = ab where
a, b > 1. Then a, b /∈ S, so are products of primes and so is m, a
contradiction. □

Definition 1.5. Let a and b be integers, not both zero. An integer c
is a common divisor of a and b if c|a and c|b. An integer d is a greatest
common divisor of a and b if it is a common divisor of a and b and if c
is any common divisor of a and b, then c|d.

Proposition 1.6. Let a and b be integers, not both zero. Then gcd(a, b)
exists and may be computed in a finite number of applications of the
division algorithm

Proof. Suppose that b > a > 0.

b = q0a + r0

a = q1r0 + r1

r0 = q2r1 + r2

...
rn−2 = qnrn−1 + rn

rn−1 = qn+1rn + 0
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and we claim that rn = gcd(a, b). In fact, gcd(b, a) = gcd(q0a+r0, a) =
gcd(r0, a). A similar computation shows gcd(r0, a) = gcd(r0, r1) =
· · · = gcd(rn, 0) = rn. □

Proposition 1.7. Suppose that c is a gcd of a and b, where a and b
are integers, not both zero. Then there exists integers x and y such that
ax + by = c.

Proof. Refer to the computation in Proposition 1.6. We claim that each
left hand side may be written as a combination of a and b. Certainly,
it is true for both a and b (for example, b = b · 1 + a · 0). By induction,
assume each of b, a, r0, . . . , rj may be written as ax + by. So write
rj = aXj + bYj and rj−1 = aXj−1 + bYj−1.

But rj+1 = rj−1 − qj+1rj = a(Xj−1 − qj+1Xj) + b(Yj−1 − qj+1Yj). By
induction rn = aX + bY for some X, Y . □

Lemma 1.8. Suppose a divides bc and gcd(a, c) = 1. Then a divides
b.

Proof. Write ax + cy = 1 by Proposition 1.7. Write bc = ka since a
divides bc. Then b = b · 1 = b(ax + cy) = bax + bcy. But a divides bax
and a divides bcy so a divides their sum, a. □

Theorem 1.9. Let n ≥ 2 be an integer. Then n can be written uniquely
(up to order) as a product of primes.

Proof. We have already seen Theorem 1.4 that n can be written as
a product of primes. Now, suppose p1p2 · · · pn = q1q2 · · · qm are two
representations of a number as a product of primes. Suppose p1 ̸= q1.
Then gcd(p1, q1) = 1. Then p1 must divide q2 · · · qm by Lemma 1.8. In
this manner, we see that p1 must be equal to some qj. So p2p3 · · · pn =
q2q3 · · · qm (after relabelling qj and q1). By induction, we conclude that
these two factorizations are the same after rearrangement, and we are
done. □

Proposition 1.10. Suppose gcd(a, b) = d. Then gcd(a/d, b/d) = 1.
Conversely, if gcd(A, B) = 1 then gcd(dA, dB) = d for d ≥ 1.

Proof. Write ax + by = d by Proposition 1.7. Since d|a, d|b, a/d and
b/d are both integers and

(a/d)x + (b/d)y = 1.

This implies that gcd(a/d, b/d) divides 1, and so is equal to 1.
Now, suppose gcd(A, B) = 1. It is clear that gcd(Ad, Bd) is at

least d, as d divides both Ad and Bd. On the other hand, writing
Ax + By = 1 implies that Adx + Bdy = d and so any divisor of both
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Ad and Bd must divide d as well. Therefore, gcd(Ad, Bd) = d, as
required. □

Proposition 1.11. Suppose gcd(a, b, c) = 1. Then
gcd(ab, c) = gcd(a, c) gcd(b, c).

Proof. Let e = gcd(a, c) and f = gcd(b, c). Since gcd(a, b, c) = 1 so too
gcd(e, f) = 1. Write e = ax + cy and f = bu + cv for x, y, u, v ∈ Z by
Proposition 1.7. Then

ef = (ax + cy)(bu + cv)
= abxu + bcyu + acxv + c2vy

= abxu + c(byu + axv + cvy).
This proves that gcd(ab, c) divides ef . On the other hand, ef divides
ab since e divides a and f divides b. We need to show that ef divides
c. Write c = ek for some integer k. But f divides c and gcd(e, f) = 1,
so f divides k. In other words, k = fℓ wo c = efℓ and ef divides c.
We conclude that ef ≤ gcd(ab, c) so ef = gcd(ab, c) completing the
proof. □

Proposition 1.12. If d|m and e|n then de|mn.
Conversely if gcd(m, n) = 1, then any divisor of mn can be written

uniquely as de where d|m and e|n.

Proof. Suppose D|mn. Let d = gcd(D, m) and let e = gcd(D, n). Then
by Proposition 1.11, de = gcd(D, mn) = D.

Suppose D = d′e′ where d′|m and e′|n and both d′ and e′ are positive
integers. Then D = d′e′ ≤ de = D, coming from the inequalities d′ ≤ d
and e′ ≤ e. But then d′ = d and e′ = e as these inequalities must be
equalities (else, D < D). □

Definition 1.13. Let a, b, c be integers. A linear diophantine equation
is an equation of the form

aX + bY = c.

Remark 1.14. Write d = gcd(a, b) and suppose d|c. Then we may find
a solution to aX + bY = c by writing ax + by = d and c = dk and then
taking X = xk and Y = yk.

Theorem 1.15. Consider the linear diophantine equation
(1) aX + bY = c.

Let d = gcd(a, b). Then if d does not divide c, Equation 1 has no
solutions. If d|c, then let X0, Y0 be a particular solution to aX +bY = c
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(from Remark 1.14). The set of all solutions to Equation 1 is given by

{(X0 + n(b/d), Y0 − n(a/d)) | n ∈ Z}.

Proof. We see that if d|c, then a particular solution can be found by
solving first d = ax + by, and using Proposition 1.7, and then Re-
mark 1.14.

On the other hand, if aX + bY = c for some integers X and Y ,
certainly d = gcd(a, b) divides c.

Now, if aX + bY = c and aX ′ + bY ′ = c, then

a(X −X ′) + b(Y − Y ′) = 0.

So let us examine the equation ax + by = 0. The solutions to this
equation don’t change if we divide through by d = gcd(a, b). Writing
now (a/d)x = −(b/d)y, since gcd(a/d, b/d) = 1, y must be a multiple
of a/d. So y = (a/d)n. Then cancellation gives x = −(b/d)n.

So X = X ′ − (b/d)n, Y = Y ′ + (a/d)n for some integer n.
That shows that any solution to Equation 1 must be of this form

(these are all seen to be solutions of the equation). □

Definition 1.16. Let S ⊆ Z. A common divisor of S is an integer c
which divides every element of S. A greatest common divisor of S is a
common divisor of S which is divisible by every common divisor of S.

Proposition 1.17. Let a1, a2, . . . , an be integers, not all zero. Let
a = gcd(an−1, an). Then gcd(a1, . . . , an) = gcd(a1, . . . , an−2, a).

Proof. Omitted. □

2. Modular arithmetic

Let n be a non-zero integer.
Definition 2.1. Let a, b ∈ Z. Then we say that a is congruent to b
modulo n if n divides b− a. In that case, we write a ≡ b mod n.

Proposition 2.2.
• If a ≡ b mod n then b ≡ a mod n.
• For all a, a ≡ a mod n.
• If a ≡ b mod n and b ≡ c mod n then a ≡ c mod n.

Proof. Omitted. □
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Definition 2.3. Let m ̸= 0. The integers modulo m are defined to be
the set of congruence classes modulo m. If a ∈ Z, the congruence class
of a modulo m is denoted a and

a = {x ∈ Z |m|x−a} = {. . . , a−2m, a−m, a, a+m, a+2m, . . .}.
The set of integers modulo m is denoted Z/mZ. If a, b ∈ Z, we define

a + b = a + b and a · b = ab.

Proposition 2.4. Suppose a ≡ a′ mod m and b ≡ b′ mod m. Then
ab ≡ a′b′ mod m and a + b ≡ a′ + b′ mod m.

Proof. Omitted. □

Remark 2.5. Note that Z/mZ = {0, 1, . . . , m− 1} and there are m
congruence classes modulo m.

Definition 2.6. Let m ̸= 0 be an integer. Let a ∈ Z. Then a is called
invertible modulo m if there exists b ∈ Z such that

ab ≡ 1 mod m.

Similarly, if α ∈ Z/mZ, then α is called invertible if there exists
β ∈ Z/mZ such that αβ = 1.

The set of all invertible congruence classes modulo m is denoted Um.

Proposition 2.7. Let α = a ∈ Z/mZ. Then α ∈ Um if and only if
gcd(a, m) = 1.

Proof. Suppose ab ≡ 1 mod m. Then there exists d such that
ab + md = 1.

This implies that gcd(a, m) = 1.
Now, suppose gcd(a, m) = 1 and write ab + md = 1. This implies

ab ≡ 1 mod m and so a is invertible modulo m. □

Remark 2.8. Let p be prime. Then Up has p− 1 elements.

Theorem 2.9. Let a ∈ Z. Then

ap ≡ a mod p.

Proof. Recall Lagrange’s Theorem from Group Theory. This tells us
that ap−1 = 1 for all a ∈ Up.

Alternatively, consider
1, 2, 3, . . . , p− 1
a, 2a, 3a, . . . , a(p− 1) .

Both sequences give a complete set of representatives modulo p.
6



We then have

1 · 2 · 3 · · · (p− 1) ≡ a · 2a · 3a · · · a(p− 1) mod m

Cancelling 1, 2, 3, . . . , p− 1 on both sides gives

1 ≡ ap−1 mod p.

□

Theorem 2.10. Let p be prime. Then Z/pZ is a field.

Proof. Omitted. □

Theorem 2.11. Let φ(m) = |Um| for m ≥ 2. Then if a ∈ Um, we
have aφ(m) = 1.

Proof. Omitted. □

Proposition 2.12. Let d = gcd(a, m). The congruence equation

ax ≡ b mod m

has a solution x ∈ Z if and only if d divides b.

Proof. Rewrite ax ≡ b mod m as

ax + my = b,

and apply Proposition 1.7. □

Proposition 2.13. Suppose d divides N . Then define f : Z/mZ →
Z/dZ by the rule

f(a) = a.

(This function takes an integer modulo m and reduces it modulo d).
Then f is a well-defined homomorphism.

Proof. Suppose a ≡ b mod m. We must show that f(a) = f(b). So m
divides b−a by the definition of divides (Definition 1.1). But d divides
m and so also divides b− a. So a ≡ b mod d as required.

It is clear that f is a homomorphism as long as f is well-defined. □

Theorem 2.14. Define F : Z/mnZ → Z/mZ × Z/nZ by the rule
F (a) = (a, a) where the first coordinate is a ∈ Z/mZ and the second
coordinate is a ∈ Z/nZ. is a modulo n.

Then F is an isomorphism of rings.

Proof. First, we show that F is well-defined. Then we show that F is
a homomorphism. Then we show that F is 1–1 and onto.
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Our definition of F is well-defined as long as each component function
is well-defined. So we need to know that for a divisor d of N , the
function

a ∈ Z/NZ 7→ a ∈ Z/dZ

is well-defined. This is Proposition 2.13.
Since each coordinate of F is a homomorphism, so too is F .
The tricky part is to prove that F is 1–1 and onto.
Let (a, b) ∈ Z/mZ× Z/nZ. Write mx + ny = 1 since gcd(n, m) = 1

and using Proposition 1.7. Let A = nya + mxb. Then A ≡ nya ≡
a mod m and A ≡ mxb ≡ b mod n. So F (A) = (a, b). So F is onto.
The function F must therefore be 1–1 as well since Z/mnZ has the
same number of elements as Z/mZ× Z/nZ. □

3. Arithmetic functions

This week, we will discuss arithmetic functions. That is functions
f : N→ C which carry some arithmetic meaning.
Definition 3.1. For n ∈ N, define d(n) = ∑

d|n 1, the sum being over
positive divisors of n. In other words, d(n) gives the number of divisors
of n. We can examine the average value of d(n). First, we need three
definitions.
Definition 3.2. Let x ∈ R. Define the greatest integer part of x,
denoted ⌊x⌋, by

⌊x⌋ = max{n ∈ Z such that n ≤ x}.

Definition 3.3. We write f(x) = O(g(x)), if there exists a positive
real constant C > 0 and a real number x0 such that

|f(x)| ≤ Cg(x)
for all x ≥ x0.
Definition 3.4. The Euler-Mascheroni constant, denoted γ, is defined
by

γ = lim
n→∞

[(
n∑

k=1

1
k

)
− log n

]
.

Proposition 3.5. We have the estimate∑
n≤X

1/n− log X = γ + O(1/X),

as X →∞, where γ is the Euler-Mascheroni constant.
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Proof. This proof uses the Euler summation formula, if you are inter-
ested. First, write

log X =
∫ X

1
1/t dt.

Then write

1/t = (t− ⌊t⌋)/t2 + ⌊t⌋/t2,

and substitute into the integral. First, note that∫ X

1
(t− ⌊t⌋)/t2 dt = O(1/X).

Now, notice that

∫ X

1
⌊t⌋/t2 dt =

∑
1≤n≤X

∫ n

n−1
(n− 1)/t2 dt +

∫ X

⌊X⌋
⌊X⌋/t2 dt

=
∑

1≤n≤X

(n− 1) (1/(n− 1)− 1/n)

+ ⌊X⌋(1/⌊X⌋ − 1/X)

=
∑

1≤n≤X

(1− (n− 1)/n) + X − ⌊X⌋
X

=
∑

1≤n≤X

1/n + O(1/X).

So we conclude that

log X =
∑

1≤n≤X

1/n + O(1/X)

as X →∞. □

Proposition 3.6. The mean value of d(n) for n ≤ X is approximately
log X + 2γ − 1. Here, γ is the Euler-Mascheroni constant defined by

γ = lim
n→∞

(
n∑

k=1
1/k − log n

)
.

Proof. Let

S(X) =
∑

n≤X

d(n),

where the sum is over positive integers n. Our goal is to prove that

S(X) = X log X + X(2γ − 1) + O(
√

X).
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First, write

S(X) =
∑

n≤X

∑
n=dk

1.

Then write

S(X) =
∑

d,k,dk≤X

1

Consider a term in S(X) corresponding to d, k with dk ≤ X. Then
either d ≤ k or k < d. Let us consider the sum of terms with d ≤ k.
Since d ≤ k and dk ≤ X, we have d ≤

√
X. For d fixed, the total

contribution is ⌊X/d⌋ − d + 1. (The admissable k for this d are k =
d, d + 1, d + 2, . . . , ⌊X/d⌋). So the total for d ≤ k is∑

d≤
√

X

(⌊X/d⌋ − d + 1).

Similarly, the total for k < d is∑
k≤

√
X

(⌊X/k⌋ − d).

In total,

S(X) = 2
∑

d≤
√

X

(⌊X/d⌋)− 2
∑

d≤
√

X

d + O(
√

X).

Now, we must estimate ∑d≤
√

X 1/d and ∑d≤
√

X d. Write∑
d≤

√
X

1/d = log(
√

X) + γ + O(1/
√

X)

by Proposition 3.5. Then write∑
d≤

√
X

d = ⌊
√

X⌋ · (⌊
√

X⌋ − 1)/2

In total,

S(X) = 2X(log(
√

X) + γ + O(1/
√

X)) + X + O(
√

X)
= X log X + (2γ − 1)X + O(

√
X).

□

Definition 3.7. In a similar vein, define σ(n) = ∑
d|n d, and in general,

σk(n) = ∑
d|n dk.
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Definition 3.8. Define ϕ(n) = |Un| for n ≥ 1. By Proposition 2.7,
ϕ(n) =

∑
1≤d≤n, gcd(d,n)=1

1

and so
(2)

∑
d|n

ϕ(n/d) =
∑
d|n

∑
k≤d,gcd(k,d)=1

1 = n.

Proposition 3.9. There exists a function µ : N→ {±1} such that for
all functions f, g : N→ C, the following are equivalent

a) for all n ∈ N, f(n) = ∑
d|n g(d),

b) for all n ∈ N, g(n) = ∑
d|n µ(d)f(d/n).

Proof. First, define a function f by the rule f(n) = 1 for all n ∈ N and
define g by the rule

g(n) =
{

1 if n = 1
0 if n > 1

So, we have

f(n) =
∑
d|n

g(d),

for all n ∈ N. We want to find a function µ such that

(3) g(n) =
∑
d|n

µ(d)f(n/d).

Certainly, we may take µ(1) = 1 so that Equation 3 holds when n = 1.
Now, assume µ(k) has been defined for all 1 ≤ k ≤ n, and Equation 3

holds for all 1 ≤ k ≤ n. Consider

g(k + 1) =
∑

d|k+1,d<k+1
µ(d)f(n/d) + µ(k + 1)f(1),

and notice that all terms have been determined except µ(k + 1). In
particular,

µ(k + 1) = −
∑

d|k+1,d<k+1
µ(d).

This proves the existence of µ(n), and we see that µ is also unique
(although we didn’t mention this).

11



Now, suppose F (n) = ∑
d|n G(n) for all n ∈ N. Then

∑
d|n

µ(d)F (n/d) =
∑
d|n

µ(d)
∑

e|(n/d)
G(e)

=
∑
e|n

G(e)
∑

d|(n/e)
µ(d)

=
∑
e|n

G(e)
{

1 if n/e = 1
0 if n/e > 1

= G(n).

Now, assume G(n) = ∑
d|n µ(d)F (n/d). Then

∑
d|n

G(n) =
∑
d|n

µ(d)
∑

e|(n/d)
F (e)

=
∑
e|n

F (e)
∑

d|(n/e)
µ(d)

=
∑
e|n

F (e) ·
{

1 if n/e = 1
0 if n/e > 1

= F (n)

□

Definition 3.10. The function µ constructed in Proposition 3.9 is
called the Möbius function.

Definition 3.11. Let g : N → C be a function. Then g is called
multiplicative if g(mn) = g(m)g(n) for all m, n such that gcd(m, n) =
1.

The function g is called completely multiplicative if g(mn) =
g(m)g(n) for all m, n ∈ N.

Proposition 3.12. The Möbius function µ is multiplicative. That is,
for all m, n with gcd(m, n) = 1, we have

µ(mn) = µ(m)µ(n).

Proof. We prove that for all N , if N = mn with gcd(m, n) = 1 then
µ(mn) = µ(m)µ(n). We proceed by induction on N , the base case
being trivial.

Let N now be given and write N = mn with gcd(m, n) = 1.
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By definition of µ, we have

µ(n) +
∑

d|n,d<n

µ(d) = 0

µ(m) +
∑

d|m,d<m

µ(d) = 0

µ(mn) +
∑

d|mn,d<mn

µ(d) = 0

Now, multiply the first two above equations to get

µ(n)µ(m) +
∑

d|n,d<n

µ(m)µ(d)

+
∑

d|m,d<m

µ(d)µ(n) +
∑

d1|m,d2|n
µ(d1)µ(d2) = 0.

Except for the first term, the induction hypothesis allows us to write

µ(n)µ(m) +
∑

d|n,d<n

µ(md) +
∑

d|m,d<m

µ(dn) +
∑

d1|m,d2|n
µ(d1d2) = 0.

But the last three sums cover all possibilities of divisors d|mn with
d < mn by Proposition 1.12. Now since µ(mn) +∑

d|mn,d<mn µ(d) = 0,
we obtain that µ(mn) = µ(m)µ(n).

By induction, we are done. □

Proposition 3.13. Suppose that f, g are arithmetic functions such that

f(n) =
∑
d|n

g(n),

for all n ∈ N.
Then f is multiplicative if and only if g is multiplicative.

Proof. Suppose g is multiplicative and f(n) = ∑
d|n g(d). Suppose

gcd(m, n) = 1. Then

f(mn) =
∑

d|mn

g(d).

For each d|mn we can write d = d1d2 where d1 = gcd(m, d), d2 =
gcd(n, d) by Proposition 1.12, and gcd(d1, d2) = 1.
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Furthermore, g(d1d2) = g(d1)g(d2) since gcd(d1, d2) = 1. Now,

f(m)f(n) =
∑
d1|m

g(d1)
∑
d2|n

g(d2)

=
∑
d1|m

∑
d2|n

g(d1)g(d2)

=
∑

d1d2|mn

g(d1d2)

=
∑

d|mn

g(d)

= f(mn)

which proves that f is multiplicative if g is.
Suppose now that f is multiplicative and g(n) = ∑

d|n µ(d)f(n/d).

g(m)g(n) =
∑
d1|m

µ(d1)f(m/d1)
∑
d2|n

µ(d2)f(n/d2)

=
∑

d|mn

µ(d)f(mn/d)

the proof being much the same as for the previous case, except that
we also need that µ(·) is multiplicative as well. Using Proposition 3.12
completes the proof. □

4. Polynomials
Definition 4.1. Let n be a non-zero integer. A polynomial with coef-
ficients in (Z/nZ)[x] is defined to be

f(x) = a0 + a1x + a2x
2 + · · ·+ akxk,

where a0, a1, . . . , ak ∈ (Z/nZ).
If ak ̸= 0, the degree of f is said to be k, and we write deg f = k.
The set of all polynomials with coefficients in (Z/nZ)[x] is denoted

(Z/nZ)[x].

Remark 4.2. Let p be a prime number. The polynomials modulo p,
(Z/pZ)[x], behave nicely.

If f, g ∈ (Z/pZ)[x] and f, g ̸= 0, then deg fg = deg f + deg g.
This is not true modulo for polynomials in (Z/6Z)[x].
From now on, we will look at polynomials modulo p, where p is

prime.

Definition 4.3. Let f(x) ∈ (Z/pZ)[x] be a polynomial. We say that
α ∈ (Z/pZ) is a root of f(x) if f(α) = 0.

14



Proposition 4.4. Let f(x) ∈ (Z/pZ)[x] and let α ∈ (Z/pZ). Then
f(α) = 0 if and only if there exists g(x) ∈ (Z/pZ)[x] such that f(x) =
(x− α)g(x).
Proof. Omitted. □

Proposition 4.5. Let f(x) ∈ (Z/pZ)[x] of degree n. Then f(x) has
at most n roots in Z/pZ.
Proof. We proceed by induction on n = deg f . The degree 0 poly-
nomials are the non-constant polynomials f(x) = c ∈ Z/pZ. The
proposition holds for these.

Now, assume that the proposition holds for all f of degree n − 1.
Let f(x) ∈ Z/pZ[x] be degree n. If f has no roots, we are done.
Otherwise, let α ∈ Z/pZ be such that f(α) = 0. By Proposition 4.4,
there exists g(x) ∈ Z/pZ[x] such that f(x) = (x − α)g(x). We have
that deg f = deg g + deg(x − α) so that deg g = n − 1. So g has at
most n− 1 roots in Z/pZ and f has at most n roots in Z/pZ, and we
are done by induction. □

5. Primitive roots
Definition 5.1. Let n ≥ 2 be an integer. Let a ∈ Un. Then the order
of a modulo n is defined to be the least positive integer d such that
ad = 1.
Proposition 5.2. Let a ∈ Un. Let d be the order of a. Then

1, a, a2, . . . , ad−1

are distinct. Furthermore, if ai = aj for two integers i, j then i ≡
j mod d.
Proof. First, suppose that aj = 1 for some integer j ≥ 1. Then use the
division algorithm to write j = qd + r where 0 ≤ r ≤ d− 1 and q ∈ Z.
Then

1 = aj

= aqd+r

= (ad)q · ar

= 1q
ar

= ar

Now, ar = 1 and 0 ≤ r ≤ d − 1 so since d is the minimal positive
integer such that ad = 1, we must have r = 0. That is, d divides j.

Now, suppose ai = aj. Then ai−j = 1 and i ≡ j mod d from the
previous argument.

15



Finally, this tells us that 1, a, . . . , ad−1 are all distinct since the dif-
ference of any two exponents will not be divisible by d. □

Definition 5.3. Let a ∈ Z and let n ≥ 2 be an integer. Then a is
called a primitive root modulo n if the order of a modulo n is equal to
|Un| = φ(n).
Proposition 5.4. Let n ≥ 2 be an integer. The following are equiva-
lent:

a) a is a primitive root modulo n

b) for every prime q dividing φ(n), we have aφ(n)/q ̸= 1
c) we have Un = {an | n ∈ Z}

Proof. Assume a is a primitive root modulo n. That is, assume the
order of a modulo n is equal to φ(n) which is equal to the num-
ber of elements of Un, by Proposition 2.7, and the definition of φ(n)
(Definition 3.8). Then, if d = φ(n), then 1, a, a2, . . . , ad−1 are all dis-
tinct (Proposition 5.2). So, {1, a, . . . , ad−1} ⊆ Un and both sets have
φ(n) = d elements, so Un = {1, a, . . . , ad−1}.

Assume Un = {an | n ∈ Z}. Let d be the order of a modulo n. Then
{an | n ∈ Z} has d elements by Proposition 5.2 and since d = φ(n), we
have that a is a primitive root modulo n.

Assume that a is a primitive root modulo n. Suppose aφ(n)/q = 1
for some prime q dividing φ(n). Then the order of a modulo n is at
most φ(n)/q < φ(n) so that a is not a primitive root modulo n, a
contradiction. Therefore, aφ(n)/q ̸= 1 for every prime q dividing φ(n).

On the other hand, suppose that a is not a primitive root modulo n.
Let the order of a modulo n be d < φ(n) and let m = φ(n)/d and let
q be a prime divisor of m. Then

aφ(n)/q = aφ(n)/d·d/q

= (am)d/q

= 1
as required.

We have now shown the equivalence of all three conditions in the
statement of the proposition. □

Theorem 5.5. Let p be a prime. Then there exist primitive roots mod-
ulo p. In other words, there is α ∈ Up such that Up = {α, α2, . . . , αp−1}.
Proof. Let A(d) be the number of elements of Up of order d, where d
divides p− 1.

Each element of order dividing d is a root of the polynomial xd − 1.
Furthermore, there are exactly d elements of Up of order dividing d.
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To see why, notice that xp−1 − 1 has exactly p − 1 roots modulo p
Theorem 2.9 and Proposition 4.5.

Now, let d divide p − 1 and see that xp−1 − 1 = (xd − 1)(1 + xd +
x2d + · · ·+xd·[(p−1)/d−1]). Since xp−1−1 has exactly p−1 distinct roots,
so too does xd − 1 have exactly d distinct roots.

This proves that d = ∑
k|d A(k) for each d dividing p−1. By Möbius

inversion Proposition 3.9,

A(k) =
∑
d|k

µ(k/d) · d = ϕ(k).

In particular, A(p − 1) = ϕ(p − 1) > 0 so that there exist primitive
roots modulo p. □

Proposition 5.6. Let p be a prime number. Then a is a primitive
root modulo p if and only if for all primes q dividing p− 1, there is no
solution to the equation b

q = a.

Proof. Suppose that q divides p − 1 and there exists b ∈ Z such that
b

q = a. Then a(p−1)/q = (bq)(p−1)/q = b
q−1 = 1. By Proposition 5.4, a is

not a primitive root modulo p.
Suppose that a is not a primitive root modulo p. Then a(p−1)/q = 1

for some prime q dividing p−1 by Proposition 5.4. Let b be a primitive
root modulo p (by applying Theorem 5.5). Write b

j = a. If j = qm

then we are done since a = b
j = (bm)q. Now, divide j by q to get

j = mq + r where 0 ≤ r < q − 1. Now see that a(p−1)/q = b
(p−1)/q·r ̸= 1

since b is a primitive root. This is a contradiction so j divides q, so
there exists a solution to β

q = a for some prime q dividing p− 1. □

Theorem 5.7. Let p > 2 be a prime number and r ≥ 1 be an integer.
If n = 2, 4, n = pr or n = 2pr then there are primitive roots modulo n.

In any other case, (if 4 divides n > 4 or if n has two distinct odd
prime divisors), then there are no primitive roots modulo n.

Proof. Omitted. □

6. Quadratic residues

Definition 6.1. Let p be a prime and let a ∈ Up. We say that a is a
quadratic residue modulo p if there exists b ∈ Up with a = b

2.
We define the Legendre symbol

(
a
p

)
for p ∤ a by the rule(

a

p

)
=
{
−1 if a is not a quadratic residue modulo p
1 if a is a quadratic residue modulo p

17



Proposition 6.2. Let p be an odd prime. Then there are (p−1)/2 qua-
dratic residues modulo p and (p− 1)/2 quadratic non-residues modulo
p.
Proof. The quadratic residues modulo p are

12
, 22

, . . . , (p− 1)/22
, (p + 1)/22

, . . . , p− 12
.

But 12 = p− 12, 22 = p− 22, and so on. So the complete list of
quadratic residues modulo p are

12
, . . . , (p− 1)/22

.

We claim that these are all distinct modulo p. If 1 ≤ i ≤ j ≤ (p− 1)/2
and i

2 = j
2 then

0 ≡ i2 − j2 ≡ (i− j)(i + j) mod p,

which implies that p divides j − i or i + j. But 1 ≤ i + j ≤ p − 1 so
it is impossible for i + j to be divisible by p. So p divides j − i. But
0 ≤ j − i ≤ (p− 1)/2 so in order to be divisible by p, it must be that
j − i = 0.

This proves that 12
, 22

, . . . , (p− 1)/22 are all distinct, so there are
exactly (p− 1)/2 quadratic residues modulo p. □

Proposition 6.3. Let p be an odd prime. Suppose gcd(p, a) = 1. Then(
a

p

)
≡ a(p−1)/2 mod p.

Proof. Let f(x) = xp−1 − 1 ∈ (Z/pZ)[x]. Notice that
f(x) = (xp−1 − 1) = (x(p−1)/2 − 1)(x(p−1)/2 + 1)

as polynomials in (Z/pZ)[x]. By Theorem 2.9, every element of Up is a
root of f(x). There are p−1 elements of Up, so by Proposition 4.5, the
roots of f(x) are exactly the elements of Up. Therefore, each element
of Up either satisfies a(p−1)/2 = 1 or a(p−1)/2 = −1.

We now claim that the quadratic residues modulo p are the roots of
x(p−1)/2 − 1 and the nonresidues are the roots of x(p−1)/2 + 1. First,
suppose b

2 = a for some b ∈ Up. Then a(p−1)/2 =
(
b

2)(p−1)/2
= b

p−1 = 1
by Theorem 2.9.

But there are (p−1)/2 quadratic residues, and x(p−1)/2−1 has degree
(p−1)/2. So the roots of x(p−1)/2−1 are exactly the quadratic residues
modulo p, by Proposition 4.5.

Therefore, the quadratic non-residues must all be roots of x(p−1)/2+1.
In other words, if a is a quadratic non-residue then a(p−1)/2 = −1.

In either case, we have a(p−1)/2 ≡
(

a
p

)
mod p. □
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Proposition 6.4. Let p be an odd prime. Suppose gcd(ab, p) = 1.
Then (

ab

p

)
=
(

a

p

)(
b

p

)
.

Proof. Certainly,

(ab)(p−1)/2 = a(p−1)/2b(p−1)/2.

By Proposition 6.3,(
ab

p

)
≡ (ab)(p−1)/2 ≡ a(p−1)/2b(p−1)/2 ≡

(
a

p

)(
b

p

)
mod p.

But since p is odd, −1 ̸≡ 1 mod p so it must be that(
ab

p

)
=
(

a

p

)(
b

p

)
,

(since each side is either ±1 and they are congruent modulo p). □

The goal of this chapter is to look at quadratic reciprocity. Here is
a preview.

Proposition 6.5. Let p be an odd prime. Then(
a

p

)
= (−1)(p−1)/2 =

{
−1 if p ≡ 3 mod 4
1 if p ≡ 1 mod 4

Proof. By Proposition 6.3,
(

−1
p

)
= (−1)(p−1)/2. Now, if p ≡ 1 mod 4

then this is 1 and if p ≡ 3 mod 4 then this is −1. □

Remark 6.6. We see clearly that the value of
(

a
p

)
depends on a mod p.

But Proposition 6.5 tells us that the value of
(

a
p

)
may depend on the

congruence class of p modulo an integer depending on a. For example,
(−1/p) depends on p modulo 4.

Later, quadratic reciprocity will tell us that
(

a
p

)
will depend on

p mod 4a.

Proposition 6.7. Let p be an odd prime. Then(
2
p

)
= (−1)(p2−1)/8 =

{
1 if p ≡ ±1 mod 8
−1 if p ≡ ±3 mod 8

Proof. We have that 2(p−1)/2 ≡
(

2
p

)
by Proposition 6.3. The idea is to

look at the sequence
2, 4, 6, . . . , (p− 1).
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On one hand, the product of the terms is

2 · 4 · 6 · · · (p− 1) = 2(p−1)/2 · 1 · 2 · · · (p− 1)/2.

We will calculate the product modulo p in another way.
First, let 2i be given where 1 ≤ i ≤ (p − 1)/2. Then we claim that

there exists 1 ≤ si ≤ (p− 1)/2 and ϵi = ±1 such that 2i ≡ ϵisi mod p.
Indeed, if 2i ≤ (p − 1)/2 then si = 2i and ϵi = 1 and if (p − 1)/2 <
2i ≤ (p−1) then 2i ≡ −(p−2i) mod p so take si = p−2i and ϵi = −1.

Therefore,

2 · 4 · 6 · · · (p− 1) =
(p−1)/2∏

i=1
ϵisi.

Now, we claim s1, s2, . . . , s(p−1)/2 is a permutation of 1, 2, . . . , (p −
1)/2.

It is enough to show that if 2i ≡ ±2j mod p with 1 ≤ i, j ≤ (p−1)/2
then i = j. Since p is odd, we have i ≡ ±j mod p. Then p divides either
i− j or i+ j. But −(p−1)/2 ≤ i− j ≤ (p−1)/2 and the only multiple
of p in that range is 0 so i = j.

Similarly if p divides i + j we have 2 ≤ i + j ≤ (p− 1) and there are
no multiples of p in this range. So it must be that i = j.

Finally, we can complete the proof. We have that

2(p−1)/2 ≡
(p−1)/2∏

i=1
ϵi,

and ϵi = −1 if and only if 2i > (p− 1)/2.
So if the number of i such that 2i > (p− 1)/2 is odd, then 2(p−1)/2 ≡
−1 mod p.

Look: p− 1, (p− 3), . . . , (p + 1− 2j) > (p− 1)/2.
But then 2p + 2− 4j > p− 1 so p− 4j + 3 > 0.
Therefore, solve 1 ≤ 4j < p + 3. How many solutions are there?

There are (p + 1)/4 of them if p ≡ 3, 7 mod 8. This is an odd number
if p ≡ 3 mod 8 and an even number if p ≡ 7 mod 8

There are (p−1)/4 of them if p ≡ 1, 5 mod 8. This is an even number
if p ≡ 1 mod 8 and an odd number if p ≡ 5 mod 8.

So we have now established the formula that(
2
p

)
=
{
−1 if p ≡ ±3 mod 8
1 if p ≡ ±1 mod 8

It remains to see that (p2− 1)/8 is even if and only if p ≡ ±1 mod 8
(exercise). □
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In the proof of Proposition 6.7, there is a calculation we can extract.

Proposition 6.8. Let p be an odd prime, and let a ∈ Up. Consider
the sequence a, 2a, 3a, . . . , p−1

2 a. Let j be the number of elements in the
sequence congruent to an integer −s with 1 ≤ s ≤ (p − 1)/2. Then(

a
p

)
= (−1)j.

Proof. Omitted. □

Theorem 6.9. Let p, q be odd primes. Then(
p

q

)(
q

p

)
= (−1)(p−1)/2·(q−1)/2.

Proof. Consider the set

W = {(a, b) | 1 ≤ a ≤ q − 1
2 , 1 ≤ b ≤ p− 1

2 }.

To compute
(

p
q

)
we count the number of s with 1 ≤ s ≤ q−1

2 and
ap ≡ −s mod q for some 1 ≤ a ≤ q−1

2 . Rewrite this equation as
ap− bq = −s for some integer b. We now claim that (a, b) ∈ W .

Certainly 1 ≤ a ≤ q−1
2 and b > 0. Now, bq = ap + s so b = ap+s

q
≤

p · q−1
2q

+ q−1
2q

< p+1
2 . Therefore, b ≤ p−1

2 since b is an integer and p is
odd.

So the number of s with 1 ≤ s ≤ q−1
2 and ap ≡ −s mod q for some

1 ≤ a ≤ q−1
2 is equal to the number of elements (a, b) of W such that

− q−1
2 ≤ ap− bq ≤ −1, let this number be M .

So we have
(

p
q

)
= (−1)M .

Similarly,
(

q
p

)
= (−1)N where N is the number of elements of the

set

{(a, b) ∈ W | 1 ≤ ap− bq ≤ p− 1
2 }.

In total the number of elements of W is p−1
2

q−1
2 . The leftover elements

are the two sets

{(a, b) ∈ W | ap− bq ≤ −q + 1
2 }

and

{(a, b)|inW | ap− bq ≥ p + 1
2 }.

We claim that these two sets have the number of elements, say R.
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If this is true, then the theorem follows since p−1
2

q−1
2 = N + M + 2R

and so

(−1)
p−1

2
q−1

2 = (−1)N(−1)M · (−1)2R =
(

q

p

)(
p

q

)
.

Now, the two sets above are in one-to-one correspondence: if ap −
bq ≤ − q+1

2 then let a′ = q+1
2 − a and b′ = p+1

2 − b and then

a′p−b′q = −(ap−bq)+ (q + 1)p− (p + 1)q
2 = −(ap−bq)+ p− q

2
from which you can see that a′p− b′q ≥ p+1

2 . Details are omitted. □

7. Continued fractions
Definition 7.1. A simple continued fraction is an expression of the
form

c = a0 + 1
a1 + 1

a2+ 1
...+ 1

an

where a0 ∈ Z and a1, . . . , an are positive integers. We write c =
[a0; a1, . . . , an].
Note that if α = [a0; a1, . . . , an] is a simple continued fraction and
an > 1 then also α = [a0; a1, . . . , an − 1, 1] as well.
Definition 7.2. Let a0 ∈ Z, a1, . . . , an positive integers and α > 1.
Then a nearly simple continued fraction is an expression

c = a0 + 1
a1 + 1

a2+ 1
...+ 1

an+ 1
α

and we use the notation c = [a0; a1, . . . , an, α].
‘
Definition 7.3. Suppose c = [a0; a1, a2, . . . , an, α] is a nearly simple
continued fraction for c. Then the n-th convergents to c are defined to
be the integers pn, qn such that qn > 0, gcd(pn, qn) = 1 and

[a0; a1, a2, . . . , an] = pn

qn

.

We have p0 = a0 and q0 = 1, p1/q1 = a0 + 1/a1 = (a1a0 + 1)/a1, etc.

Proposition 7.4. For all α > 0, we have

[a0; a1, . . . , an, α] = αpn + pn−1

αqn + qn−1
22



Proof. (By induction). Assume that

[a0; a1, . . . , an−1, α] = αpn−1 + pn−2

αqn−1 + qn−2

for all α > 0. Then taking α = an gives the formula
pn

qn

= anpn−1 + pn−2

anqn−1 + qn−2
.

Now,
[a0; a1, . . . , an−1, an, α] = [a0; a1, . . . , an−1, an + α−1]

= (an + α−1)pn−1 + pn−2

(an + α−1)qn−1 + qn−2

= anpn−1 + pn−2 + α−1pn−1

anqn−1 + qn−2 + α−1qn−1

= αpn + pn−1

αqn + qn−1

as required. □

Proposition 7.5. We have

pn+1 = anpn + pn−1

and

qn+1 = anqn + qn−1

for all n ≥ 1.

Proof. See proof of Proposition 7.4. □

Proposition 7.6. Let x ∈ Q. Then we can write x = [a0; a1, . . . , an]
for some integer a0 and positive integers a1, . . . , an.

Proof. Let x = a0 + a/b where a0 ∈ Z and 0 < p/q < 1. Write
b = q0a + r0. Then

x = a0 + 1
q0 + (r0/a)

Now, write a = q1r0 + r1. Then

x = a0 + 1
q0 + 1

q1+r1/r0

and applying the Euclidean algorithm, eventually we are writing
rn−1 = qn+1rn + 0,
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with the result that

x = a0 + 1
q0 + 1

q1+ 1
...+ 1

qn+1

so that x = [a0; q0, q1, . . . , qn+1] as required. □

Proposition 7.7. We have
pn+1qn − pnqn+1 = (−1)n.

Proof. We have p0 = a0, q0 = 1 and p1 = a0a1 + 1, q1 = a1. And
(a1a0 + 1) · 1− a0a1 = 1 = (−1)0

Now, assume that pnqn−1 − pn−1qn = (−1)n−1. Consider
pn+1qn − pnqn+1 = (an+1pn + pn−1)qn − pn(an+1qn + qn−1)

= pn−1qn − pnqn−1

= −(−1)n−1 = (−1)n

completing the proof by induction. □

Proposition 7.8. We have∣∣∣∣∣pn

qn

− pn−1

qn−1

∣∣∣∣∣ = 1
qnqn−1

.

Proof. Consider∣∣∣∣∣pn

qn

− pn−1

qn−1

∣∣∣∣∣ =
∣∣∣∣∣ (−1)n

qnqn−1

∣∣∣∣∣
≤ 1

qnqn−1
.

□

Theorem 7.9. Let cn = pn/qn be the convergents for the real number
α. Then

c0 < c2 < c4 < · · · < c2n < · · · < α

< · · · < c2n+1 < · · · < c5 < c3 < c1.

Furthermore, limn→∞ cn = α.

Proof. Certainly c0 < α < c1.
Suppose now that cn < α < cn+1. Let f(z) = pn+zpn+1

qn+zqn+1
. Then

f ′(z) > 0 on the interval [0,∞).
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Notice that f(an+2) = cn+2. Also,
pn+3

qn+3
= an+3pn+2 + pn+1

an+3qn+2 + qn+1

= an+3(an+2pn+1 + pn) + pn+1

an+3(an+2qn+1 + qn) + qn+1

= an+3pn + (an+2an+3 + 1)pn+1

an+3pn + (an+2an+3 + 1)qn+1

= f

(
an+2an+3 + 1

an+3

)
Furthermore, f(0) = cn and f(z)→ cn+1 as z →∞.

Roughly cn < cn+2 = f(an+2) < f(αn+2) < f(· · · ) = cn+3 < cn+1
and f(αn+2) = α.

Now, applying Proposition 7.8 implies that limn→∞ cn = α. □

Definition 7.10. A continued fraction α = [a0; a1, a2, . . . , an, . . .] is
called eventually periodic if there exists an integer N and an integer k
such that

an+k = an for all n ≥ N.

A continued fraction α = [a0; a1, . . . , an, . . .] is called purely periodic
if there exists an integer k such that an+k = an for all n ≥ 0.

Theorem 7.11. Let α = [a0, a1, . . . , ak] be a purely periodic continued
fraction. Then α is the root of a quadratic equation ax2 + bx + c = 0
with a, b, c ∈ Z. Furthermore, if β = [ak, ak−1, . . . , a0] then α′ = −1/β
and −1 < α′ < 0 is the conjugate root to α of ax2 + bx + c = 0.

Conversely, if α is the root of a quadratic equation ax2 + bx + c = 0
and α > 0 and the conjugate root α′ lies between −1 and 0 then α is
purely periodic.

Proof. Omitted. □

Theorem 7.12. Let N > 0 be a square-free integer. Then
√

N = [a, a1, a2, . . . , ai, ai, . . . , a2, a1, 2a]
or

√
N = [a, a1, a2, . . . , ai, ai−1, . . . , a2, a1, 2a]

Proof. There exists a ∈ Z such that a +
√

N is a purely periodic
quadratic irrational. Write a +

√
N = [a0, a1, . . . , ak]. Then if β =

[ak, ak−1, . . . , a0] we have −1/β = a −
√

N so 1/β =
√

N − a. But
1/β = [0, ak, ak−1, . . . , a0] and

√
N = [a, ak, . . . , a0]. But also,

√
N =
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[a0 − a, a1, . . . , ak, a0, a1, . . .] This implies a0 = 2a, ak = a1, a2 =
ak−1, . . . So the continued fraction of

√
N is

√
N = [a, a1, a2, . . . , ai, ai, . . . , a2, a1, 2a]

or
√

N = [a, a1, a2, . . . , ai−1, ai, ai−1, . . . , a2, a1, 2a]
□

8. Pell equations
Definition 8.1. Let N > 0 be a square-free integer. Then the equation

x2 −Ny2 = 1
is called a Pell’s equation, and

x2 −Ny2 = −1
is called a negative Pell’s equation.

Proposition 8.2. Let
√

N = [a, a1, a2, . . . , a2, a1, 2a] and let
pn/qn = [a, a1, a2, . . . , a2, a1].

Then
p2

n −Nq2
n = (−1)n.

Proof. Omitted. □

9. Cryptography and RSA

Let us try to describe the goal of cryptography. Imagine two peo-
ple want to communicate sensitive information. In cryptography, these
people are called Alice and Bob. But they can only communicate over
an insecure channel. For example, maybe they are broadcasting their
message by using a radio, or they are communicating on a message
board. Or, maybe they are communicating over the internet and they
are worried that some actor may intercept their message. It is unac-
ceptable for them to send their messages directly.

So Alice wants to send Bob a message and she wants to make sure
that no one except for Bob can decode the message. First, Alice con-
verts her message into a positive integer, say m. Then Alice performs
some transformation on m, and obtains a ciphertext c (also an integer).
Alice sends c to Bob. Bob receives c and needs to be able recover m.

The requirements on the transformation that Alice uses are:
a) it shouldn’t take too long to compute c given m
b) Similarly, c shouldn’t take up much more space than m.
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c) When Bob receives c, he should be able to recover m without
much trouble

d) But if an undesirable actor intercepts c, they should not be able
to recover m.

In this chapter, we will describe the RSA public-key cryptography
system.
Definition 9.1. This is how Bob chooses a private key and public key
in RSA.

a) Bob chooses two prime numbers p and q.
b) Bob computes N = pq and ϕ(N) = (p− 1)(q − 1).
c) Bob chooses a secret key d such that 1 < d < ϕ(N) and such

that gcd(d, ϕ(N)) = 1.
d) Bob computes e with 1 < e < ϕ(N) such that ed ≡ 1 mod

ϕ(N).
Now, Bob’s public key is defined to be (N, e). Bob’s private key is
defined to be (ϕ(N), d).

Definition 9.2. Alice has a message m ∈ Z/NZ and she wants to
send the message safely to Bob. She looks up Bob’s public key: (N, e).
She computes c = me ∈ Z/NZ.

Definition 9.3. Bob receives the ciphertext c from Alice. He computes
cd ∈ Z/NZ.

Proposition 9.4. Let c = me ∈ Z/NZ. Then cd = m.
So when Bob decrypts c by computing cd using his private-key, he

has successfully recovered the original message m.

Proof. We have de ≡ 1 mod φ(N). Therefore, cd = (me)d = mde =
m1+kφ(n) = m by Theorem 2.11. □

Proposition 9.5. Let x ∈ Z/NZ and n be a positive integer. There is
an algorithm that can compute xn in approximately log n steps.

Proof. Here, we just give the algorithm. We are given n and x ∈ Z/NZ.
a) initialize r = 1
b) write n = 2n′ + b
c) set r ← r · xb

d) set r ← r2 and n← n′

e) if n′ = 0 then stop, otherwise go to step 2.
□
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10. Elliptic curves over the rationals
Definition 10.1. For us, an elliptic curve over Q will be a cubic equa-
tion of the form

E : y2 = x3 + Ax + B,

where A, B are rational numbers.
Let f(x) = x3 + Ax + B. We require that f(x) has three distinct

roots in C.
Definition 10.2. The rational points of E, denoted E(Q), is

E(Q) = {(x, y) ∈ Q2 | y2 = x3 + Ax + B} ∪ {∞}.
Here ∞ means ‘the point at infinity’.

Proposition 10.3. Let P, Q ∈ E(Q) be two distinct points and suppose
P, Q ̸=∞. Then there exists a third point R ∈ E(Q) which is collinear
with P, Q.

Proof. If the line intersecting P, Q is a vertical line, let R =∞.
Otherwise, let y = mx + b be the line joining P and Q. Then

substitute this equation into the equation for E:

(mx + b)2 = x3 + Ax + B.

This equation has two roots corresponding to the x-coordinates of P, Q.
Let the third root be x0. Then x0 ∈ Q (since the other two roots are
rational). Then y0 = mx0 + b ∈ Q as well and R = (x0, y0) is the point
we are looking for. □

Proposition 10.4. Let P ∈ E(Q) and P ̸=∞. Then the tangent line
to E at P intersects E at a point R ∈ E(Q).

Proof. Find the slope of the tangent line to E at P = (a, b). Use
implicit differentiation:

2 dy b = 3a2 dx + A dx

at the point P = (a, b):
dy

dx
= 3a2 + A

2b
,

unless b = 0. If b = 0 then the tangent line is x = a, and we take
R =∞.

Otherwise, set m = 3a2+A
2b

and substitute b = 3a2+A
2b

a + c.

c = −b2 + 3B

2b
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So the tangent line is y = 3a2+A
2b

x + −b2+3B
2b

. This line intersects E at a
third point since x = a is a double root. Let R be the third point (just
as in Proposition 10.3). □

Definition 10.5. Let P ∈ E(Q). Define −P ∈ E(Q) to be
a) ∞ if P =∞
b) (a,−b) if P = (a, b)

Let P, Q ∈ E(Q).
Define P + Q ∈ E(Q) as

a) If P =∞ then define P + Q = Q
b) If P = Q, let R be as in Proposition 10.4, and define 2P = −R
c) If P ̸= Q, let R be as in Proposition 10.3 and define P + Q =
−R.

Theorem 10.6. The set E(Q) with composition defined by Defini-
tion 10.5 is an abelian group.
Proof. Omitted. □

Theorem 10.7. There is an integer r ≥ 0 and points P1, . . . , Pr which
generate E(Q) as an abelian group.
Proof. Omitted. □

Definition 10.8. We can write
E(Q) ∼= (Z)r ⊕ A

where A is a finite abelian group. (In fact, a lot is known of the
structure of A).

Then r is called the rank of E. If r = 0 then E has finitely many
rational points and if r > 0 then E has infinitely many points.
Definition 10.9. Let n be a positive integer. Then n is called a con-
gruent number if it is the area of a right triangle with rational side
lengths.
Proposition 10.10. Let n be an integer. Let En : y2 = x3 − n2x. Let
rn be the rank of En. Then n is a congruent number if and only if the
rank of En is positive.
Proof. We will just prove that if rn > 0 then n is a congruent number.
The converse is more difficult and we will omit it.

Let P = (a, b) be a point of infinite order on En(Q). We have b ̸= 0
(else, 2P = 0). Furthermore, we may assume that a > 0. (This can be
seen if you draw a picture of the real points of E).

Now, let A = a2−n2

b
, B = 2na

b
, C = a2+n2

b
.

We claim that A2 + B2 = C2 and AB
2 = n. (Check it). □
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