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Abstract. Let ϕ : A → K{τ} be a Drinfeld module of rank 2 with generic

characteristic, and suppose that the endomorphism ring of ϕ induces a Drinfeld
module ψ : B → K{τ} of rank 1. Let a ∈ K. We prove that the set of places ℘

of K for which a generates ϕ(F℘) as an A-module has a density. Furthermore,

we show that this density is positive unless there is a good reason.
We also revisit Artin’s problem for Drinfeld modules of rank 1, first consid-

ered by Hsu and Yu. A key point is that our methods do not require that A

be a principal ideal domain. We are also able to generalize a Brun-Titchmarsh
theorem for function fields proved by Hsu.

1. Introduction

Let a ∈ Z and let p be a prime. Denote the residue class of a modulo p by a.
We say that a is a primitive root modulo p if a generates the multiplicative group
(Z/pZ)∗. A conjecture of Artin states that if a ̸= 0,±1 or any perfect square, then
the density of primes for which a is a primitive root is positive. In this introduction,
we want to give an overview of the results in this area. We wish to show that our
results naturally arise when thinking of Artin’s conjecture.

We use the notation that if X is a finite set then |X| is the number of elements
of X.

In 1967, Hooley [Hoo67, Theorem, p. 219] proved that if a is not equal to
0,±1 or any perfect square, then the density of primes for which a is a primitive
root is positive conditional on the generalized Riemann hypothesis. Bilharz solved
an analogous problem for function fields in [Bil37], thirty years prior to Hooley.
His thesis showed, conditional on the Riemann Hypothesis for function fields later
proved by Weil, that if K is a function field with constant field Fq and a is a non-
zero, geometric element of K which is not an l-th power for any prime divisor l of
q − 1 then a is a primitive root modulo P for infinitely many primes P of K. Not
everything is perfect when we translate to the world of function fields – in Bilharz’s
result a Dirichlet density is obtained.

We see that by replacing Q with a function field, we can sometimes obtain un-
conditional results which can be compared to the conditional results in the classical
setting. We do not have to stop with replacing the field Q with a function field
K, we can also replace the multiplicative structure of Q with other structures. By
replacing the structure of the rationals with other nice structures over global fields,
we can ask new questions.

We can replace rational numbers under multiplication with an elliptic curve E
defined over Q and replace a ∈ Q× with a point a ∈ E(Q). Let E be an elliptic
curve defined over Q and a ∈ E(Q) be a point of infinite order.
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Definition 1.1. The point a ∈ E(Q) is a primitive point for E modulo p if E has
good reduction at p and the residue of a in E modulo p generates the finite group
E modulo p.

Lang and Trotter conjectured that there is a density of primes p for which a is
a primitive point modulo p, and that this density can be seen to be positive under
certain conditions.

Gupta and Murty were able to gain traction on this problem by assuming that E
has complex multiplication by the full ring of integers OL in an imaginary quadratic
extension L/Q. As E is defined over Q, the class number of OL is 1.

The prime counting functionMa(x) is defined to be the number of primes p ≤ x,
such that p splits in L, and a is a primitive point modulo p.

Theorem 1.2 ([GM86, Theorem 1]). Let E be an elliptic curve defined over Q with
complex multiplication by the ring of integers in a quadratic imaginary extension L
of Q. Let a ∈ E(Q) be a point of infinite order. Assuming the generalized Riemann
hypothesis, we have the estimate

Ma(x) = CE(a) li(x) +O

(
x log log x

(log x)2

)
as x→ ∞,

and CE(a) > 0 if 2 and 3 are inert in L or L = Q(
√
−11).

So far the literature can treat the classical case under GRH, the case of ellip-
tic curves under certain special conditions and the GRH, and the function field
analogue unconditionally. Furthermore, if we only require infinitely many primes
(instead of a set of primes of positive density), then there are some unconditional
results available.

There are still more questions that we can consider. We can replace the structure
of an elliptic curve or the rational numbers by the structure of a function field given
by a Drinfeld module ϕ. Briefly, a Drinfeld module ϕ equips a function field with a
non-trivial A-module structure, where A is the subset of the function field regular
outside of a fixed place. If one thinks of an elliptic curve as equipping its rational
points with the structure of a Z-module, then the similarities are especially striking.

By considering Drinfeld modules of rank 1, Hsu [Hsu97, Theorem 4.6], and later,
Hsu and Yu [HY01, Theorem 4.6] proved Drinfeld module analogues of Hooley’s
original result. To give some more perspective, we now state Hsu and Yu’s result.

Theorem 1.3 ([HY01, Theorem 4.6]). Let k be a global function field with constant
field Fr, ∞ a place of k of degree 1, and A the ring of elements of k regular
everywhere except possibly ∞. Let H be the Hilbert class field of A, O the integral
closure of A in H. Fix a sign function sgn : k∗∞ → F∗

r. Let ψ : A → O{τ}
be a sgn-normalized Drinfeld module of rank 1. Let 0 ̸= a ∈ O. Suppose that
r ̸= 2. Let Na(x) denote the number of primes p of O of degree x for which a + p
generates O/p as an A-module (the A-structure coming from the reduction of ψ).
Then Na(x) = δar

x/x + o(rx/x) and furthermore, δa ̸= 0 is given by an Euler
product.

Notice that this result assumes that the degree of the point at infinity is 1,
that the A-field is the Hilbert class field of A, and that the Drinfeld module is
sign-normalized. We will prove a Drinfeld module analogue to Gupta and Murty’s
result, or if you wish, a rank 2 analogue of Hsu and Yu’s result. Our result is
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analogous to both Gupta and Murty’s result and Hsu and Yu’s result, but in order
to get our results we need to express the Lang-Trotter condition in terms that are
tractable for rings which are not principal ideal domains. The arguments in both
Gupta and Murty’s paper and Hsu and Yu’s paper will not work for non-principal
ideal domains. As a corollary of our proof, one can conclude Artin’s conjecture for
rank 1 Drinfeld modules ψ : B → K{τ} where K is any finite extension of k and a
is any non-torsion element of K for which the division fields K(q−1⟨a⟩) =: La

q ̸= K
for every prime ideal q of B. This seems to be about the strongest type of result
one can expect in this generality.

Allow us now to try to describe how our results relate to both Gupta and Murty’s
work [GM86] and Hsu and Yu’s work [HY01].

Let A = Z[i] and E be the elliptic curve y2 = x3 − x. Let k = Q(i), then E(k)
is an A-module, and A is a principal ideal domain. Let a ∈ E(k) be non-torsion.
We say that a is a primitive point modulo a place ℘ of k if E(F℘) is generated
by a as an A-module. The methods of Gupta and Murty apply to tell us that if
Lq = k(q−1a,E[q]) ̸= k for each prime q of A, then a is a primitive point modulo
℘ for infinitely many places ℘. This problem is analogous in some ways to Artin’s
original conjecture and Hsu’s paper [Hsu99], one of the differences being that E
does not have good reduction everywhere unlike Gm and the Carlitz module.

Let A be the ring of integers of a quadratic imaginary extension k/Q and suppose
that A has class number one. Let E be an elliptic curve with complex multiplication
by A so that E(k) is an A-module. The methods of Gupta and Murty again apply
to this case. This problem is analogous to Hsu and Yu’s paper [HY01].

Now, suppose E/K is an elliptic curve with complex multiplication by the ring
of integers A ⊆ k. Suppose that the endomorphisms of E are defined over K ′.
Then E(K ′) is an A-module, and we can consider Artin’s conjecture within this
framework. But the methods of Gupta and Murty (and similarly, Hsu and Yu’s
methods) do not apply here. On the other hand, our methods can apply to this
problem. This problem may be considered as a classical analogue to the problems
considered in this paper. We will return to these ideas in the future.

We now state our main theorem.

Theorem 1.4. Let F be a global function field over Fr, ∞ a fixed place of F , A
the ring of elements of F regular everywhere except possibly ∞, and K a finite
extension of F .

Let ϕ : A → K{τ} be a Drinfeld module of generic characteristic and of rank
2. Let B = End(ϕ), and suppose that B is the integral closure of A in a quadratic
extension of F , and suppose the elements of B have coefficients in K.

Let a ∈ K and define Na(x) to be the number of primes ℘ of K of degree equal
to x such that the reduction of a generates F℘ as an A-module.

Then there is a positive integer J and constants δ(0), δ(1), . . . , δ(J−1), depending
on ϕ and a, such that as x ≡ i mod J and x→ ∞ we have the estimate

Na(x) = δ(i)
rx

x
+O

(
rx log x

x2

)
.

We now describe the advances made in our work.
In Section 3, we formulate a Lang-Trotter type condition and in Section 4 make

Galois theory calculations. It should be noted that we use Pink’s work [Pin16] as a
black box, and prove linear disjointness results based on Pink’s open-image theorem.
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We do so because working with Pink’s results leads us to formulate the Lang-Trotter
condition in terms of q−1W , where W is the B-submodule of K generated by a
and q is a prime of B. This formulation leads to a fuller understanding of the
Lang-Trotter condition. Also, the division modules q−1W behave nicely even when
q is not a principal ideal. This is not so in [HY01]. See, for example, the proof of
[HY01, Proposition 2.3], in which it is claimed that

ϕq(α) ≡ a mod P′

implies that
ϕ(p−1)q−1(a) ≡ 0 mod P′

which requires us to accept that

ϕ(p−1)q−1ϕq = ϕ(p−1)

which does not necessarily hold if q is not principal.
In Section 5, we calculate discriminant bounds in order to apply the Chebotarev

density theorem. Our Theorem 5.11 may be viewed as a generalization of Gardeyn’s
discriminant calculations in [Gar02] and of the discriminant calculations in [HY01].

There are two difficulties to overcome in calculating discriminants of the division
fields which are not addressed in [HY01]. First, our division fields are of the form
K(q−1W ), where q−1W = {α ∈ Ksep | ψt(α) ∈ W for all t ∈ q}, and W is the
B-submodule of K generated by a. So the division field is not necessarily the
splitting field of a single polynomial. To overcome this obstacle, we must estimate
the discriminant locally. For each prime considered, we can choose a nice t ∈ q
so that K(q−1W ) ⊆ K((t)−1W ) where now K((t)−1W ) is the splitting field of
ψt(x)− a.

There is another difficulty as well. We also do not assume that our Drinfeld
module has good reduction at every prime. Similarly, we do not assume that a
is integral at every prime of K. Adding these assumptions would simplify our
calculations at the cost of less generality.

Proving the main theorem constitutes Section 6. This section is a straightforward
combination of the analysis contained in [GM86], but worked out in the function
field setting. The function field setting provides a few challenges which we are able
to overcome.

In particular, we are able to remove any technical assumption about the division
fields being geometric. Furthermore, we are able to prove a result which we summa-
rize as “if the set of primes satisfying Artin’s conjecture should not be finite, then
the set of primes satisfying Artin’s conjecture has positive density”. This has its
roots in the paper [KL09]. This happens in Section 7. We are also able to recover
the results contained in [HY01], this deduction comprises Section 8. Furthermore,
we are able to extend the Brun-Titchmarsh theorem proved by Hsu in [Hsu99] to
include the case that deg∞ > 1. To do this requires careful accounting of the
original proof. We have included this accounting in Section 9. We hope that our
presentation illuminates several key lemmas.

2. Notations and basic facts

We introduce some general notation and facts for Drinfeld modules. We will
indicate when any additional assumptions are made on top of the standard defini-
tions. The reader may consult Goss’ book [Gos96] for a complete introduction to
Drinfeld modules.
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Let Fr be the finite field with r elements, where r is a power of a rational prime
p.

A global function field with the constant field Fr is a field L over Fr with an
element T ∈ L such that L is a finite separable extension of the field Fr(T ), where
T is transcendental over Fr, and the algebraic closure of Fr in L is equal to Fr.

A place of L is a pair P = (OP ,mP ) where OP ⊂ L is a discrete valuation ring
with the maximal ideal mP ⊂ OP , and the quotient field of OP is equal to L.

The residue field at a place P is FP = OP /mP .
The degree of P (for this paper we take the degree relative to Fr), degP , is the

degree of the extension [FP : Fr].
Each place induces a discrete valuation on the field L, the unique normalized

discrete valuation corresponding to P will be denoted by vP .
A divisor D of L is a (finite and formal) sum over the places of L,

D =
∑

vP (D) · P.

The degree of a divisor D is

degD =
∑

vP (D) degP.

Now, let F be a global function field with a fixed place ∞.
The subring R of F of all elements of F which are integral at all places except

at the place ∞ is a Dedekind domain. The place ∞ is called the infinite place and
every other place is called a finite place. If P = (OP ,mP ) is a finite place of F ,
then the ideal of R, mP ∩R is a prime ideal of R. By abuse of notation, this prime
ideal is also called P . Ideals of R correspond to divisors of F supported on the
finite places.

An R-field L is a field L equipped with an Fr-morphism ι : R → L. The prime
ideal w = ker(ι) is called the R-characteristic of L. We say that L has generic
R-characteristic if w = (0); otherwise, we say that L has finite R-characteristic.

Let

Fw = {x ∈ F | x = a/b, a, b ∈ R, b /∈ w}
and notice that ι extends to a map ι : Fw → L. If w ̸= 0 then ι essentially
embeds the residue field at w into L. If, however, w = 0 then ι embeds F into L.
Furthermore, if ℘ = (O℘,m℘) is a place of L, then there is a corresponding place
of F , denoted by ι∗℘ = p = (Op,mp)

Op = {x ∈ F | ι(x) ∈ O℘}

mp = {x ∈ F | ι(x) ∈ m℘}.
Let L be an R-field and let τ be the Frobenius endomorphism relative to Fr, that

is τ(X) = Xr. In the ring EndL(Ga) of all L-endomorphisms of the additive group
scheme Ga|L, by identifying the element b ∈ L with the endomorphism defined
by multiplication by b, we have that τ generates a subalgebra L{τ} of EndL(Ga).
It is a non-commutative polynomial algebra in τ subject to the rule τb = brτ for
all b ∈ L. We have two homomorphisms: ϵ : L → L{τ} defined by ϵ(b) = b and
D : L{τ} → L defined by D

(∑n
i=0 biτ

i
)
= b0.

A Drinfeld R-module ρ over L is an Fr-algebra homomorphism

ρ : R→ L{τ} ⊂ EndL(Ga), z 7→ ρz,

such that ι = D ◦ ρ and ρ ̸= ϵ ◦ ι.
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Let degτ ρz denote the degree of ρz in τ and let deg(z) denote the degree of z.
There exists a unique positive integer d, called the rank of ρ, such that degτ ρz =
ddeg(z).

For a finite place ℘ of L of good reduction (see [Gos96, Definition 4.10.1]) for
ρ, denote by ρ ⊗ F℘ the Drinfeld module obtained by reducing the coefficients of
ρ modulo ℘. Note that the definition of good reduction ensures that ρ ⊗ F℘ is a
Drinfeld module of the same rank as ρ.

If the context is clear, we will use ρ to mean ρ⊗ F℘.
Denote by ρ(F℘) the set F℘ with R-action given by (ρ ⊗ F℘) (this is the main

place where we will use ρ to mean ρ⊗ F℘). The R-characteristic of ρ⊗ F℘ is seen
to be ι∗℘.

An endomorphism of ρ is a polynomial f ∈ L{τ} such that fρz = ρzf for all
z ∈ R, where L is an algebraic closure of L. The set of all endomorphisms is
denoted by EndL(ρ). We say that ρ has complex multiplication if EndL(ρ) ̸= R.

We have introduced some of the general concepts that we will be considering for
Drinfeld modules. Let us now set up the specific situation for this paper. We will
also compare our assumptions to some previous works.

Let F be a global function field with constant field Fr. Let ∞ be a place of
F . Let A be the ring of elements of F regular at all places except for possibly ∞.
Let K be an A-field of generic characteristic (so that ι : A → K has ker(ι) = (0)).
Assume that K/ι(F ) is a finite extension. Let ϕ : A→ K{τ} be a Drinfeld module
and assume that ϕ is of rank 2. Let B = EndKsep(ϕ) and assume that B ̸= A. This
implies that κ = B ⊗A F is a quadratic extension of F in which ∞ does not split.

Remark 2.1. In Hsu and Yu’s work [HY01], it is assumed that deg∞ = 1, that the
A-field K is the Hilbert class field of A, and that the Drinfeld module in question
is sign-normalized. We do not make these assumptions. In particular, we can drop
the assumption that deg∞ = 1 by adapting the proof of the Brun-Titchmarsh
theorem for function fields in [Hsu99] to the case that deg∞ > 1. See Section 9.

Also, assume that B is the integral closure of A in κ. This assumption is made
for simplicity. In general B is an A-order in κ. Finally, assume that the elements
of B are defined over K. That is, we assume

B = EndK(ϕ) = EndK(ϕ).

Remark 2.2. How strong is this hypothesis that the endomorphisms of ϕ have
coefficients in K? In general, we have B = EndK′(ϕ) for some Galois extension
K ′/K. In fact, if we put A′ = EndK(ϕ), and F ′ the fraction field of A′, then [KT20,
Proposition 3.1] implies that Gal(κ/F ′) ∼= Gal(K ′/K). Because κ/F ′ is either a
quadratic extension or κ = F ′, we have that K ′/K is either a quadratic extension
or K ′ = K. In the case that K ′/K is a quadratic extension, when we replace K
with K ′, we are essentially only considering primes ℘ of K which split completely
in K ′. This is the same tact as Gupta and Murty take in [GM86]. In fact, it is
possible to prove a density theorem for the primes ℘ of K which are inert in K ′

using the techniques of [KT20], and we plan to carry out this strategy for elliptic
curves with complex multiplication at a later time.

Now that we have considered the assumptions and limitations of our approach,
let us finish setting up the notation for Theorem 1.4. Let ψ : B → K{τ} be the
Drinfeld B-module defined by ψa = f(τ), where f ∈ EndK(ϕ) is associated to
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a ∈ B under B ∼= EndK(ϕ). This turns K into a B-field by the homomorphism
(let us also call it ι) ι(a) = D(f(τ)) where f 7→ a in EndK(ϕ) ∼= B, as long as we
remember that D is the function which gives us the constant term of an additive
polynomial.

Let P∞ be the set of places Q of K for which ι∗Q corresponds to the place ∞
of F . All other places of K are called finite places. Let Pgood be the set of finite
places ℘ of K for which a is a unit modulo ℘ and for which the coefficients of ϕb are
℘-integers and the leading coefficients of ϕb are units modulo ℘ for all b ∈ A. This
only excludes finitely many places which satisfy [Gos96, Definition 4.10.1]. The
finite places which are not in Pgood make up the set Pbad.

We say that a is a primitive point modulo ℘ if a is a unit modulo ℘ and ϕ has
good reduction at ℘ (in other words, ℘ is in Pgood) and the reduction of a modulo
℘ generates F℘ as an A-module under the action of ϕ reduced modulo ℘. Let x be
a positive integer and finally define the prime ideal counting function Na(x) by

Na(x) = |{℘ ∈ Pgood | deg℘ = x, a is a primitive point modulo ℘}| .

Remark 2.3. Note A is not assumed to have class number 1 We do not assume
that deg∞ = 1 and we do not make restrictions on the leading coefficient of the
polynomials ϕb ∈ K{τ}.

We are able to recover the results of [HY01]. We only use the results of [HY01] on
the degree and ramification of the extensionsK(ψ−1

m (a), ψ[m])/K whenm ∈ B, and
we deduce the calculations when m is a non-principal ideal from these calculations.

It seems that we rely on the results of Pink [Pin16], but for our case, these results
can be deduced without too much trouble from [HY01]. The real reason that we
cite [Pin16] is to use the description of what “q−1a” means when q is not a principal
ideal.

3. Reduction Theory for Drinfeld modules

Our goal in this section is to formulate a Lang-Trotter condition (as in [GM86])
for Drinfeld modules. The main difficulty is that the Lang-Trotter condition in
[GM86] assumes that the endomorphism ring is a principal ideal domain (which
happens naturally if one is interested in elliptic curves that are defined over Q
with complex multiplication). This assumption seems rather unnatural for Drin-
feld modules of rank 2. However, it is not necessary for us to assume that the
endomorphism ring is a principal ideal domain. In this section we will prove that
the Lang-Trotter condition can be formulated in terms of a set a−1W , where W is
the B-submodule of K generated by a. We can do this in such a way to take ad-
vantage of Pink’s paper [Pin16]. Importantly, the terminology of Pink’s paper gives
a natural expression for a Lang-Trotter condition while the main result of Pink’s
paper lets us compute the degree of the various Kummer extensions. It should be
noted that Pink’s paper [Pin16] is important to this paper for its notation, and
any generalization to the case where the rank of the Drinfeld module is greater
than 1 will crucially rely on Pink’s paper [Pin16]. Also note that the approach of
considering n−1⟨a⟩ was taken by Kowalski [Kow03].

We summarize the arguments of this section. Recall that W is the B-submodule
of K generated by a, and red(W ) ⊆ F℘ its reduction modulo ℘ for primes ℘ in
Pgood. If q is a prime ideal of B, the goal is to determine when the index of the
reduction of W in F℘ is divisible by q. The key is to look at q−1W = {α ∈
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Ksep | ψb(α) ∈ W for all b ∈ q} and the splitting type of ℘ in K(q−1W ), the
smallest field containing all of q−1W .

Our strategy is to follow the steps below.

(i) red(W ) ̸= F℘ if and only if q−1 red(W ) ⊆ F℘ for some prime ideal q of B.
(ii) There is an onto map from q−1W → q−1 red(W ).
(iii) The Frobenius is trivial on q−1 red(W ) if and only if it is trivial in K(q−1W )
(iv) K(q−1W ) is equal to K(q−1W/W ) and the Galois group of the latter field

can be calculated by the results of [Pin16].

Definition 3.1. Let M be a B-submodule of K and m an ideal of B. Then define

m−1M = {x ∈ Ksep | ψm(x) ∈M for all m ∈ m}.

If ψ has good reduction at a prime ℘ ofK andM ′, is a B-submodule of F℘, similarly
define m−1M ′.

Proposition 3.2. Let M ′ be any B-submodule of F℘. Let p be the B-characteristic
of F℘. Assume that p ∤ m. Then we have

(F℘/M
′) [m] ∼= (B/m)

if and only if

m−1M ′ ⊆ F℘.

Proof. Notice that because the reduction of ψ is rank 1, p does not divide m, and
M ′ is torsion, we get that

m−1M ′/M ′ ∼= B/m.

If we now suppose that

m−1M ′ ⊆ F℘,

we get that the m-torsion of F℘/M
′ is isomorphic to B/m.

Suppose F℘/M
′[m] ∼= B/m. Since

B/m ∼= F℘/M
′[m] ⊆ m−1M ′/M ′ ∼= B/m

it follows that F℘/M
′[m] = m−1M ′/M ′ and therefore m−1M ′ ⊆ F℘. □

Proposition 3.3. Let M be a B-submodule of a field L. Suppose ℘ is a prime of L,
with local ring O℘, maximal ideal m℘ and residue field F℘ = O℘/m℘. If M ⊆ O℘

and ψ has good reduction at ℘ then red(M) = (M +m℘)/m℘ is a B-submodule of
F℘, and the reduction map

M → red(M)

is onto.

Proof. We only need to check that red(M) is a B-submodule of F℘. First, notice
that M ⊆ O℘ and ψ has good reduction at ℘. Since ψ has good reduction at ℘,
we have that ψb(m℘) ⊆ m℘ for all b ∈ B. Now, we can conclude that red(M) is a
B-submodule of F℘. □

Now, let W be the B-submodule of K generated by the non-torsion element
a ∈ K. Fix a separable closure Ksep of K. Let GK = Gal(Ksep/K). Let m be an
ideal of B. Then m−1W and m−1W/W are both GK modules.

Proposition 3.4. Let m be an ideal of B. Then for all σ ∈ GK , σ is the identity
on m−1W if and only if σ is the identity on m−1W/W .
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Proof. This is essentially [Pin16, Proposition 2.13]. The “only if” part is clear.
Suppose σ is the identity on m−1W/W . Then let λ ∈ m−1W and suppose σ(λ)−λ ∈
W . By definition, ψm(λ) ∈ W for each m ∈ m. Since ψm has coefficients in K, we
obtain that ψm(σ(λ)) = ψm(λ) which implies σ(λ)−λ ∈ ψ[m]. But ψ[m]∩W = {0}
since W is torsion-free. So σ fixes m−1W . □

Definition 3.5. Now, let La
m be the fixed field of the subgroup

{σ ∈ GK | σ is trivial on m−1W}

of GK . In other words, La
m = K(m−1W ). We have that La

m/K is a finite Galois
extension. If s is an ideal of B then put Ks = K(ψ[s]). Also, put La

m,s = La
m ·Ks.

The following is essentially [Hsu97, Proposition 1.1].

Proposition 3.6. Let m ∈ B and put m = (m). Then La
m is the splitting field of

ψm(X)− a.

Proof. Choose α such that ψm(α) = a. Then any element of m−1W can be repre-
sented as ψb(α)+λ where λ ∈ ψ[m]. But any element of ψ[m] is a difference of roots
of ψm(X)−a. This tells us that La

m is contained in the splitting field of ψm(X)−a
and the converse is obvious. □

We need to know that La
m/K is unramified above ℘ almost always.

Proposition 3.7. Suppose that ψ has good reduction at ℘ and that W ⊆ O℘. In
particular, this only excludes finitely many primes ℘. Suppose that p is the B-
characteristic of F℘ as a B-module. Suppose that m is an ideal of B such that
p ∤ m. Then La

m/K is unramified above ℘.

Proof. Let b = lcm(a, sB) and let m = bh where h is the class number of B. Then
m = (m) for some m ∈ B. So La

a,s is contained in the splitting field of ψm(X)− a.
It is standard (see [Gos96, Theorem 4.10.5]) that K(ψ[m])/K is unramified above
℘ if p is coprime to (m). The field Lm/K(ψ[m]) is generated by any root α of
ψm(X) − a. Furthermore, if f(X) = ψm(X) − a then f ′(X) = ι(m) which has
zero valuation at ℘ since p does not divide m. This implies that Lm/K(ψ[m]) is
unramified above ℘. □

Proposition 3.8. Let ℘ be a prime of K, let m be an ideal of B and suppose that
p ∤ m where p is the B-characteristic of F℘. Suppose that ψ has good reduction at ℘
and thatW ⊆ O℘. Let σ ∈ Gal(La

m/K) be a Frobenius automorphism corresponding
to ℘. Then σ = 1 if and only if m−1 red(W ) ⊆ F℘.

Proof. Let σ be a Frobenius automorphism for ℘, and let n(℘) be the number of
elements of F℘. That means that σ(x) ≡ xn(℘) mod ℘ for all x ∈ m−1W .

Suppose now that σ = 1. That implies that m−1 red(W ) ⊆ F℘, since the reduc-
tion map m−1W → m−1 red(W ) is onto.

Suppose that m−1 red(W ) ⊆ F℘. Then σ(x) ≡ x mod ℘ for all x ∈ m−1W . But
La
m is unramified at ℘, so this implies that σ = 1. □

We are now able to establish a Lang-Trotter criterion which we will use to detect
whether a modulo ℘ generates F℘ as an A-module.
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Proposition 3.9. Let ℘ be a prime of K, let a and s be ideals of B and suppose
that p ∤ a and p ∤ s where p is the B-characteristic of F℘. Suppose that ψ has
good reduction at ℘ and that W ⊆ O℘. Let σ ∈ Gal(La

a,s/K) be a Frobenius

automorphism corresponding to ℘. Then σ = 1 if and only if a−1 red(W ) ⊆ F℘ and
s−10 ⊆ F℘.

Proof. Notice that ℘ splits completely in La
a,s if and only if ℘ splits completely in

both La
a and K(ψ[s]) since La

a,s = La
a ·K(ψ[s]). That ℘ splits completely in La

a if

and only if a−1 red(W ) ⊆ F℘ is the previous proposition. That ℘ splits completely
in K(ψ[s]) if and only if s−10 = ψ[s] ⊆ F℘ follows by taking W = 0. □

4. Application of Pink’s Open Image Theorem

Suppose that {Ha}a is an inverse system of groups (where a runs over ideals of
B). Suppose that for any pair of ideals a and b such that a divides b, there exists
a surjective homomorphism πa,b : Hb → Ha. Suppose that if a and a′ are coprime
then the natural map

Haa′ → Ha ×Ha′

is an isomorphism.
Suppose that L is a field, and Lsep a separable closure of L, and suppose there

exists a homomorphism ρ : GL → H where GL = Gal(Lsep/L).
Suppose that πa : H → Ha is the natural projection. Define ρa : GL → Ha to

be the composition πa ◦ ρ.
Let X = H/ρ(GL), the set of cosets of ρ(GL) in H. Applying the propositions

[BK72, Chapter IX, Propositions 2.3 and 2.4] to our situation gives that

(1) H/ρ(GL) ∼= lim
a
Ha/ρa(GL),

as long as {ρa(GL)} satisfies the Mittag-Leffler condition.
If in addition, we assume that H/ρ(GL) is finite, then we conclude that there

exists M ∈ B such that

H/ρ(GL) ∼= HM/ρM (GL)

and further that

HMa/ρMa(GL) ∼= HM/ρM (GL)

for any ideal a of B.
Note that the above holds if M is replaced by M ′ with M |M ′.
Now assume that a is an ideal that is coprime to M · B, the ideal generated by

M . Suppose that b is an ideal, all of whose prime factors divide M (so clearly, b is
coprime to a). Then b divides Mk for some positive integer k, and

HMka/ρMka(GL) ∼= HMk/ρMk(GL)

by Equation 1. But also HMka
∼= HMk ×Ha and the kernel of the composition

HMka → HMk ×Ha → HMk/ρMk(GL)×Ha/ρa(GL)

contains ρMka(GL) giving a homomorphism

HMka/ρMka(GL) → HMk/ρMk(GL)×Ha/ρa(GL)

But the first coordinate is an isomorphism by Equation 1. As both sides are finite
groups, we have that Ha = ρa(GL) and ρMka(GL) ∼= ρMk(GL)× ρa(GL)
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Let us define the necessary homomorphisms. Let Tad(ψ) = Hom(k/B,DivKsep(0)).
Notice that this is the limit of Hom(a−1/B,DivKsep(0)). Then the action of GK

on Tad defines a homomorphism ρ1 : GK → AutBad
(Tad(ψ)) and denote by Γ the

image of ρ1. Let L = K(DivKsep(0) and consider the homomorphism ρ2 : GL →
Hom(W,Tad(ψ)) as well (see [Pin16] for details). Let ∆ be the image of ρ2.

The theorems by Pink and Rutsche [PR09, Theorem 0.1] and Pink [Pin16, The-
orem 5.1] tell us the homomorphisms ρ1 and ρ2 have open images. Since the groups
AutBad

(Tad(ψ)) and HomB(W,Tad(ψ)) satisfy the Mittag-Leffler condition, we can
obtain M1 satisfying the following property.

Corollary 4.1. Suppose that a, a′, s, and s′ are ideals of B such that a and s
are coprime to M1 and the prime factors of a′ and s′ divide M1. Define n(a, s) =
[La

a,s : K]. Then

n(aa′, ss′) = n(a, s)n(a′, s′)

and

n(a, s) = |B/a| · |(B/b)×|
where

b = lcm(s, a).

5. Ramification calculations

We recall the machinery of the different, for more details see [FJ08, Section 3.6].
The degree of the different appears in the Riemann-Hurwitz formula [Ros02,

Theorem 7.16]. We need the Riemann-Hurwitz formula to determine the genus of
L′ in terms of the genus of L. The genera of L′ and L both appear in an effective
Chebotarev density theorem for L′/L, as such we must compute the differents
of various fields. More specifically for fields L′ over some fixed field L, we must
determine a bound for degDiff(L′/L)/[L′ : L].

The different Diff(L′/L) is defined to be the following divisor of L′

Diff(L′/L) =
∑

dL′/L(Q̂)Q̂,

where the sum is over all places Q̂ of L′, and dL′/L(Q̂) is the different exponent

of L′/L at Q̂. The different exponent is zero at all unramified places of L′. The
degree of Diff(L′/L) is (relative to Fr)

degDiff(L′/L) =
∑

dL′/L(Q̂) deg Q̂,

where the degree deg Q̂ is the degree of a place of L′ relative to Fr.

Remark 5.1. We now deal with a more general class of Drinfeld modules and
submodules W of K. These assumptions will remain in place for the remainder of
this section.

Let A be the ring of regular functions of a function field k, and K a A-field under
the map ι : A → K, and let us assume that ι is injective. Let ρ : A → K{τ} be
a Drinfeld module of rank n and let a1, . . . , at ∈ K. Let W = ⟨a1, . . . , at⟩ be the
A-submodule of K generated by a1, . . . , at.

Definition 5.2. Let W and ρ be as in Remark 5.1. Let a be an ideal of A. Then
put a−1W = {x ∈ Ksep | ρm(x) ∈W for all m ∈ a} and put LW

a to be the smallest
field which contains all of a−1W .
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Now consider ρ1 : GK → AutBad
(Tad(ψ)) and ρ2 : GL → HomB(W,Tad(ψ)).

Let w′ be a place of LW
a . Then there is a place w of K which lies below w′. Also,

by using the structure map ι : k → K, there is a place v of k lying below w.
If v is not the infinite place of A, then v corresponds to an ideal q of A, and we

write v(a) = j to mean that a = qja′ where a′ is coprime to q.
Let eLW

a /K(w′) and eK/k(w) denote the ramification indices of w′ over w and w
over v respectively.

For each place w of K, let Ow be the elements of K which are regular at w, and
mw the maximal ideal of Ow.

We now recall the definition of integral coefficients, good reduction, and stable
reduction (see [Gos96, Definition 4.10.1]).

Definition 5.3. If for all a ∈ A, we have that ρa ∈ Ow{τ} and the reduction
of the coefficients modulo mw defines a Drinfeld module over Ow/mw of rank n′

with 0 < n′ ≤ n, then we say that ρ has integral coefficients. If ρ ∼= ρ′ (that is,
there exists u ∈ K with ρ′ = u−1ρu) such that ρ′ has integral coefficients and the
reduction of the coefficients of ρ′ defines a Drinfeld module of rank n, then we say
that ρ has good reduction. If ρ ∼= ρ′ and ρ′ has integral coefficients then we say
that ρ has stable reduction.

We now give two additional definitions. We say that if ρ has integral coefficients
and the reduction of the coefficients of ρ defines a Drinfeld module of the same rank
as ρ, then we say that ρ has good coefficients.

Let W be an A-submodule of K. If there exists u ∈ K so that ρ′ = u−1ρu has
good coefficients and so that u−1W ⊆ Ow, then we say that the pair (ρ,W ) has
good reduction.

Proposition 5.4. Let L be an extension of K and suppose that ρ : A → L{τ} is
a Drinfeld module of rank n. Let x ∈ A and suppose that ρ[x] ⊆ L. Let a ∈ L.
Suppose w is a place of L. Let L′ = L(α) where ρx(α) = a. Let w′ be a place of L′

lying above w. Let e be the ramification index of w′ over w. There exists constants
C1(w, a, ρ) and C2(w, a, ρ) (depending on ρ and a) such that if w(u) ≥ C1(w, a, ρ),
then u−1ρyu ∈ Ow and u−1a /∈ Ow, and furthermore

dL′/L(w
′) ≤ e(w(ι(x)) + C2(w, a, ρ))

Proof. Notice that since ρ is finitely generated, if we make w(u) sufficiently large
then u−1ρyu ∈ Ow for all y ∈ A. Then by taking w(u) > w(a), we then ensure
that w(u−1a) < 0. This gives us our constant C1(w, a, ρ) (which we assume to be
an integer).

Now, let u ∈ L be such that w(u) = C1(w, a, ρ). Then let f(X) = u−1ρxu(X)−
u−1a, so that if ρx(α) = a, then f(u−1α) = 0. Then let g(X) = (u/a)Xdeg ff(1/X),
so that g(u/α) = 0.

Notice that g(X) ∈ Ow[X] and g is a monic polynomial.
We compute

g′(X) = ua−1 deg fXdeg f−1f(1/X) + ua−1Xdeg ff ′(1/X) · (−1/X2)

and since deg f = rn deg x = 0 in K, and f ′(1/X) = ι(x) we have

g′(X) = −ua−1Xrn deg x−2ι(x).

We want to apply [Ser79, Chapter III, Corollary 2 to Proposition 11]. We need
to compute w′(g′(uα−1)).
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We see that

w′(g′(uα−1)) = w′(ua−1) + (rn deg x − 2)w′(uα−1) + w′(ι(x)).

But notice that w′(ua−1) = rn deg xw′(uα−1), the reason being that the roots of
f(X) are of the form u−1α+λ where ρ′x(λ) = 0, and so w′(u−1α+λ) = w′(u−1λ) as
w′(λ) ≥ 0 > w′(u−1α). This implies that w′(u−1a) = rn deg xw′(u−1α). Therefore,

w′(g′(uα−1)) ≤ w′(ua−1) + rn deg xw′(uα−1) + w′(ι(x))

= 2w′(ua−1) + w′(ι(x)).

As w(u) > w(a) and w(u) = C1(w, a, ρ), writing w
′(y) = ew(y) for all y ∈ L, gives

the result. □

Proposition 5.5. Let L be an extension of K and suppose that ρ : A → L{τ} is
a Drinfeld module of rank n. Let x ∈ A and suppose that ρ[x] ⊆ L. Let a ∈ L.
Suppose w is a place of L, and suppose that there is u ∈ K such that ρ′ = u−1ρu
has good coefficients at w (so that ρ has good reduction at w). Let L′ = L(α) where
ρx(α) = a, and suppose that u−1a ∈ Ow. Let w′ be a place of L′ lying above w.
Then

dL′/L(w
′) ≤ w′(ι(x)).

Proof. Let f(X) = ρ′x(X)− u−1a. Then

f(u−1α) = ρ′x(u
−1α)−1

u a

= u−1ρx(uu
−1α)− u−1a

= u−1(ρx(α)− a)

= 0.

Since u−1a ∈ Ow, f(X) has coefficients in Ow and its leading coefficient is in O×
w .

Therefore, [Ser79, Chapter III, Corollary 2 to Proposition 11] applies to give

dL′/L(w
′) ≤ w′(ι(x)).

□

Proposition 5.6 ([Gar02, Proposition 6]). Let a be an ideal of A, and let L =
K(ρ[a]).

Let w be a finite place of K, and let w′ be a place of L lying above w.
If ρ has good reduction at w, then dL/K(w′) ≤ nv(a)eL/K(w′)eK/k(w).
There exists a constant C(ρ) (only depending on ρ) such that if ρ does not have

good reduction then

dL/K(w′) ≤ (nv(a) + C(ρ))eL/K(w′)eK/k(w).

Proof. Although the result in [Gar02] is proved for A = Fr[T ], the result we stated
can be proved in the same manner. □

Proposition 5.7. Let x ∈ A and let w′ be a place of LW
(x) which lies above a place

w of K.
Then, there is a constant C3(w,W, ρ) such that for all x ∈ A,

dLW
(x)

/K(w′) ≤ eLW
(x)

/K(w′)(eK/k(w)v(x)(n+ t) + C3(w,W, ρ)).
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Suppose that ρ has good reduction at w, ρ′ = u−1ρu has good coefficients at w,
and u−1W ⊆ Ow, then

dLW
(x)

/K(w′) ≤ eLW
(x)

/K(w′)eK/k(w)v(x)(n+ t).

Proof. Let L0 = K(ρ[x]) and for each i = 1, 2, . . . , t let Li = Li−1(αi) where
ρx(αi) = ai and a1, . . . , at generate W . Notice that LW

(x) = Lt and let wt be the

valuation w′. Then for i = 0, 1, 2, . . . , t−1, let wi be the valuation of Li lying below
wt.

For each i = 1, . . . , t, let di denote the different exponent of Li over Li−1 at the
place wi, and let ei denote the ramification index at wi of Li over Li−1, and let d0
and e0 denote the different exponent and ramification index respectively of L0/K
at the place w0. Then repeatedly applying [Ser79, Chapter III, Proposition 8], we
see

dLt/K(wt) = dt + etdt−1 + etet−1dt−2 + · · ·+ et · · · e2d1 + et · · · e2e1d0.

First, let us deal with the case of an arbitrary finite place w. We have by
Proposition 5.6, that

d0 ≤ e0(eK/kv(x)n+ C(ρ)).

By Proposition 5.4,

di ≤ ei(wi−1(ι(x)) + C(w, ρ, ai)).

Now, recall that

etet−1 · · · ei+1eiwi−1(α) = et · · · e1e0w(α) = eLt/Kw(α)

for all α ∈ K, and i = 0, 1, . . . , t. Therefore,

dLt/K(wt) ≤ eLt/K(wt)(w(ι(x) · (n+ t) + C(ρ) +

t∑
i=1

C(w, ρ, ai))

= eLt/K(wt)
[
eK/k(w)v(x) · (n+ t) + C3(w,W, ρ)

]
by taking C3(w,W, ρ) = C(ρ) +

∑t
i=1 C(w, ρ, ai).

Suppose that there exists u ∈ K such that u−1ρu has good coefficients and
u−1W ⊆ Ow.

We have that [Gar02, Proposition 6] (which can be generalized without much
trouble) tells us that

d0 ≤ nw0(ι(x)).

Also, Proposition 5.5, implies that for each i = 1, 2 . . . , t,

di ≤ wi(ι(x)),

since wi(u
−1ai) ≥ 0. Now, recall that

etet−1 · · · ei+1wi(α) = et · · · e1e0w(α) = eLt/Kw(α)

for all α ∈ K, and i = 0, 1, . . . , t. Therefore,

dLt/K(wt) = eLt/K(wt)(w(ι(x)) · (n+ t).

It remains to remark that w(ι(x)) = eK/k · v(x). □

Remark 5.8. The following proposition from [HY01] was stated for a specific class
of Drinfeld modules, but may be generalized without problems.
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Proposition 5.9 ([HY01, Proposition 3.2(4)]). Let v be an infinite place of K,
and Kv the completion of K at v. There exists a finite extension L/Kv such that

DivKsep(W ) ⊆ L.

Proposition 5.10. There exists a finite set Sbad of finite places of K and constants
C4, C5, and C6 such that for each place w′ of LW

a

(i) if w ∈ Sbad, then dLW
a /K(w′) ≤ (C4 · v(a) + C5)eLW

a /K(w′),
(ii) if w is an infinite place of K, then dLW

a /K(w′) ≤ C6, and
(iii) otherwise, dLW

a /K(w′) ≤ eLW
a /K(w′)eK/k(w)v(a)(n+ t).

Proof. We define the set Sbad of places of K to be the set of finite places for which
the pair (ρ,W ) does not have good reduction.

Since A is finitely generated as an algebra over Fr, it is clear that Sbad is finite.
Suppose that w /∈ Sbad. Then let c be the product of the all the prime ideals p

of A such that there is a place in S lying above p. Let q be the prime ideal of A
corresponding to w of K.

Let x ∈ a be such that (x) = ab where b is coprime to aqc (see [Mil14, Corollary
20.13] or slightly modify [DF04, Corollary 19]).

Then we have that (x)−1W = a−1W + b−1W . This implies that LW
(x) = LW

a LW
b .

Furthermore, since q does not divide b and (ρ,W ) has good reduction at all places
lying above prime ideals dividing b, it follows that LW

b /K is unramified above w.
Let w′′ be a place of LW

(x) lying above w′.

Applying Proposition 5.7 gives the bound

dLW
a /K(w′) ≤ dLW

(x)
/K(w′′) ≤ eLW

(x)
/K(w′′) · eK/k(w) · v(x)(n+ t)

since (ρ,W ) has good reduction at w. But eLW
(x)

/K(w′′) = eLW
a /K(w′) since LW

(x) =

LW
a · LW

b and LW
b is unramified above w. Therefore,

dLW
a /K(w′) ≤ eLW

a /K(w′) · eK/k(w) · v(x)(n+ t).

But, again, by choice of b, we have that v(x) = v(a). This gives the stated bound
for w /∈ Sbad.

Suppose that w is an infinite place of K. Let Kw be the completion of K at w.
Then Proposition 5.9 gives a finite extension L of Kw (not depending on a) such
that LW

a ⊆ L. To complete the proof of this case, we just take C6 to be larger than
the different exponent of L/Kw, which, again, does not depend on the ideal a.

The only remaining case is when (ρ,W ) does not have good reduction at w, that
is w ∈ Sbad. Let x ∈ a be such that deg x ≤ deg a + g − 1 + deg∞ (choose x by
applying the Riemann-Roch theorem to the divisor D = N∞−a where N is chosen
so that deg a+ g ≤ N deg∞ < deg a+ g + deg∞).

Then LW
a ⊆ LW

(x) and [LW
(x) : L

W
a ] can be crudely bounded by r(n+t)2(g−1+deg∞).

Let w′′ be a place of LW
(x) lying above the place w′ of LW

a .

We have

dLW
a /K(w′) ≤ dLW

(x)
/K(w′′) ≤ eLW

(x)
/K(w′′)(eK/kv(x)(n+ t) + C(w,W, ρ))

by Proposition 5.7. But then since eLW
(x)

/LW
a
(w′′) is bounded by [LW

(x) : L
W
a ] which

is bounded independently of a, and since v(x) ≤ v(a)+g−1+deg∞, we can bound
the above by

eLW
a /K(w′)(C4v(a) + C5).
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□

Now, define two sets of places of k. Define S′
bad to be the set of places v of k,

such that there is a place w ∈ Sbad of K which lies above v. Define S′
good to be the

set of places v of k, such that no places w of K lying above v has w ∈ Sbad.
For any divisor D =

∑
v nv · v of k, we define degbad(D) =

∑
v∈S′

bad
nv deg(v),

and similarly define deggood(D) =
∑

v∈S′
good

nv deg(v). This can then be extended

to define degbad(a) and deggood(a) for ideals a of A.
Combining the above bound and summing over all places w of K gives the

following bound.

Theorem 5.11. There exists constants C7 and C8 depending only on ρ and W
such that for all ideals a of A, we have

degDiff(LW
a /K) ≤

(
deggood(a)(n+ t) + C7 degbad(a) + C8

)
[LW

a : K]

Proof. Write

Diff(LW
a /K) =

∑
v

∑
w|v

∑
w′|w

dLW
a /K(w′) deg(w′)

where the left-most sum is over all places v of k, the next sum is over places w of
K lying over v, and the right most summation is over places w′ of LW

a lying over
w. Split the sum into Σ∞ + ΣS + Σ′ where Σ∞ is the sum over the place v = ∞,
Σbad is over v ∈ S′

bad, and Σgood is the remaining places (those v in S′
good).

Recall that deg(w′) = fLW
a /K(w′) deg(w) where w′ is a place of LW

a lying above
a place w of K, and fLW

a /K(w′) is the inertial degree of w′ over w. Therefore, as
we sum over places w′ lying above a fixed place w, we have

∑
w′|w

eLW
a /K(w′) deg(w′) =

∑
w′|w

eLW
a /KfLW

a /K(w′) deg(w) = [LW
a : K] deg(w).

We have

Σ∞ =
∑
w|∞

∑
w′|w

dLW
a /K(w′) deg(w′) ≤ C6

∑
w′

deg(w′) ≤ C6

∑
w|∞

deg(w)[LW
a : K]

We have

Σbad =
∑

v∈S′
bad

∑
w|v

∑
w′|w

dLW
a /K(w′) deg(w′) ≤

∑
v

∑
w|v

∑
w′|w

eLW
a /K(C4v(a) + C5) deg(w

′)

=
∑

v∈S′
bad

∑
w|v

(C4v(a) + C5)) deg(w)[L
W
a : K]

≤ (C7 degbad(a)) [L
W
a : K] + C5[L

W
a : K]

∑
v∈S′

bad

∑
w|v

deg(w).
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Finally

Σgood =
∑

v∈S′
good

∑
w|v

∑
w′|w

dLW
a /K(w′) deg(w′)

≤
∑

v∈S′
good

∑
w|v

∑
w′|w

(n+ t)v(a)eLW
a /K(w′)eK/k(w) deg(w

′)

=
∑

v∈S′
good

deg(v)(n+ t)v(a)[LW
a : K]

= (n+ t) deggood(a)[L
W
a : K]

Putting C8 = C5

∑
v∈S′

bad

∑
w|v deg(w) + C6

∑
w|∞ deg(w) gives the result. □

Remark 5.12. If one assumes further that (ρ,W ) has potentially stable reduction
at every finite place w of K, then one is able to prove a result more in line with
Gardeyn’s work. If one assumes that for each finite place w of K, there exists
u ∈ K such that u−1ρu has integral coefficients and u−1W ⊆ Ow, then one is able
to leverage the existence of the exponential function in [Dri74, Proposition 7.2] to
get a much cleaner bound than the one we have obtained. The crucial point is that
one is able to extend the base field to reduce to the case of good reduction.

We now state the particular result we need. Recall that La
a,s is the extension

defined in Definition 3.5.

Proposition 5.13.

degDiff(La
a,s/K)/n(a, s) ≪ deg a+ deg s.

Proof. Now, working in the specific case that ψ : B → K{τ} is a rank-1 Drinfeld
module, W = ⟨a⟩ is the B-submodule of K generated by a, applying Theorem 5.11
gives that

degDiff(La
a/K) ≪ deg a[La

a : K]

and

degDiff(Ks/K) ≪ deg s[Ks : K].

But this is enough to get the stated bound, as

Diff(La
aKs/K) = Diff(La

aKs/Ks) + Diff(Ks/K).

□

6. Analysis

The goal of this section is to prove Theorem 1.4. Note that our strategy essen-
tially follows the work of Hooley [Hoo67] with minor modifications as necessary.
Roughly speaking, in the function field setting rx will stand in for the size of a
prime of degree x, whereas in the classical setting we may consider primes p ≤ x.
Continuing the analogy, a term of the form rx/x will correspond to x/ log x in the
classical setting, and log x in the function field setting will correspond to log log x
in the classical setting. In this way, one may trace through our work (and that of
Hsu and Yu [HY01]) and (with minor exceptions) link it to its analogue in Hooley’s
work.
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We need to estimate Na(x). To do this we need some notations. Recall that

Pgood =

℘ a finite place of K

∣∣∣∣∣∣∣∣
for all b ∈ B,
the coefficients of ψb are in O℘ and
the leading coefficient of ψb is in O∗

℘.
Furthermore, a is in O∗

℘


and

Na(x) = |{℘ ∈ Pgood | deg℘ = x, a is a primitive point for ϕ modulo ℘}| .
We say that a prime ideal P of B is of first degree if it lies above a prime ideal

p of A and the residue field extension is of degree 1 over Fp.
Let

S = {q ⊂ B | q is a prime ideal of B of first degree},
T = {q ⊂ A | q is a prime ideal of A},

N(x, y) =

∣∣∣∣∣∣∣∣∣∣

℘ ∈ Pgood

∣∣∣∣∣∣∣∣∣∣
deg℘ = x,
℘ does not split completely in any La

q

where q ∈ S with deg q ≤ y, and
℘ does not split completely in any Kq,
where q ∈ T, deg q ≤ y



∣∣∣∣∣∣∣∣∣∣
,

and

Mx(y1, y2) =

∣∣∣∣∣∣
℘ ∈ Pgood

∣∣∣∣∣∣
deg℘ = x,
℘ splits completely in some La

q or Kq,
q ∈ S, q ∈ T, y1 ≤ deg q,deg q ≤ y2


∣∣∣∣∣∣ .

For the rest of the paper, the implied constants of O depend only on ϕ and a.
Notice that as long as we have ϕ, all related subjects, such as F , κ, K, and ψ will
be decided.

We are now able to estimate Na(x) by N(x, y) with error term O(Mx(y, x)). We
will later choose an appropriate y as a function of x to control the main and error
terms.

Proposition 6.1.

Na(x) = N(x, y) +O (Mx(y, x) + ry) ,

as x→ ∞.

Proof. We will see that

Na(x) ≤ N(x, y) +O(ry),

and

N(x, y) ≤ Na(x) +Mx(y, x),

for x large enough.
First, suppose that ℘ is counted by Na(x). Then by Proposition 3.9, ℘ does not

split completely in any extension Kq or La
q where q ̸= P and q ̸= p, where P is the

A-characteristic of F℘ and p is not equal to the B-characteristic of F℘.
If ℘ is not counted by N(x, y), it can only mean that the degree of p or P is

less than y. The number of ℘ such that P or p have degree less than y is O(ry) by
[Ros02, Theorem 5.12]. If you assume that y/x → 0 you can reduce this error to
zero for x large enough. This proves that

Na(x) ≤ N(x, y) +O(ry),
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as x→ ∞.
Now, if a prime is counted by N(x, y), either it does not split completely in

any of the extensions Kq or La
q, or it is counted by Mx(y, x). If it does not split

completely in any Kq or La
q then it is counted by Na(x). This is standard and

follows from Proposition 3.9.
This proves that

N(x, y) ≤ Na(x) +Mx(y, x),

as x→ ∞ which completes the proof of the proposition. □

We use the principle of inclusion and exclusion to estimate N(x, y) in terms of
the number of places of K splitting completely in the extensions La

a,s/K. This
requires the Chebotarev Density theorem.

Let L and L′ be two global function fields with Fr ⊂ L ⊂ L′. Let G = Gal(L′/L).
Let FL,FL′ denote the constant fields of L and L′ respectively.

Let σP be the Artin symbol (which denotes a conjugacy class of G) for P with
respect to L′/L, and dL = [FL : Fr], and rL′ = [FL′ : FL]. For a conjugacy class
C ⊂ G, define

πC(x) = {P|degP = x,P is a prime unramified in L′/L, and σP ⊂ C}.

A final note, in the theorem cited below, the degree of a place of L′/L is relative
to the constant field of L. When we apply this theorem later, the degree of a place
will be relative to the field Fr instead.

Theorem 6.2 ([FJ08, Chebotarev Density Theorem, Chapter 6, Section 4]). Let
L′/L be a finite Galois extension with Galois group G. Let C ⊂ G be a conjugacy
class whose restriction to FL′ is the h-th power of the Frobenius automorphism of
FL. Then for x ∈ N, if x ̸≡ h (mod rL′), we have

πC(x) = 0.

If x ≡ h (mod rL′),∣∣∣∣πC(x)− rL′
|C|
|G|

rdLx

x

∣∣∣∣
≤ 2|C|
x|G|

((|G|+ gL′rL′)(rdLx)1/2 + |G|(2gL + 1)(rdLx)1/4 + gL′rL′ + |G|d/dL),

where gL′ , gL denote the genus of L′ and L respectively, and d is a constant depend-
ing on a choice of T with L/Fr(T ) algebraic (otherwise unrelated to the result).

Although the effective version is not explicitly listed as a theorem, one can trace
through [FJ08, Chapter 6, Section 4] to find all the constants.

To estimate N(x, y), which we expect to be the main term, we use Theorem 6.2.
Let us fix ideals s and a, where s is a square-free ideal of A and a is a square-free

ideal of B only divisible by prime ideals of first degree. Set L′ = La
a,s, L = K. Let

us rename all constants in terms of a and s, for ease of notation. The algebraic
closure of Fr inside La

a,s is, say, Fa,s, and put j(a, s) = [Fa,s : Fr]. The genus of
La
a,s is denoted g(a, s) and, recall that n(a, s) = [La

a,s : K].
Since we are interested in the prime ideals which split completely, we let C = {1},

and let πa,s denote πC for this particular choice of L′ and L.
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Proposition 6.3. If x ≡ 0 (mod j(a, s)) then∣∣∣∣πa,s(x)− j(a, s)
rx

n(a, s)x

∣∣∣∣ = O

(
rx/2

x
(deg a+ deg s)

)
.

Otherwise, πa,s(x) = 0.

Proof. Applying Theorem 6.2 to our special case, if x is divisible by j(a, s) then∣∣∣∣πa,s(x)− j(a, s)
rx

n(a, s)x

∣∣∣∣ ≤
2

xn(a, s)

(
(n(a, s) + g(a, s))rx/2 + n(a, s)(2gK + 1)rx/4 + g(a, s) + n(a, s)d

)
,

where d = [H : Fr(t)] for some fixed separating transcendence element t.
We can use the Riemann-Hurwitz formula [Ros02, Theorem 7.16] to bound the

genus of La
a,s in terms of the different of La

a,s/K and gK :

2g(a, s)− 2 = n(a, s)(2gK − 2) + d(a, s).

Using this our formula becomes∣∣∣∣πa,s(x)− j(a, s)
rx

n(a, s)x

∣∣∣∣
≪ 1

xn(a, s)

(
(n(a, s) + d(a, s))rx/2 + n(a, s)rx/4 + d(a, s)

)
.

Using Proposition 5.13, we get∣∣∣∣πa,s(x)− j(a, s)
rx

n(a, s)x

∣∣∣∣ ≪ rx/2

x
(deg a+ deg s) ,

completing the bound. □

Now, we can prove that N(x, y) is a constant times rx/x. To make our summa-
tions clear, we introduce the following notations. Let

Sy = {q ∈ S|deg q ≤ y},
Ty = {q ∈ T |deg q ≤ y},

and let S∗
y denote all the ideals of Oκ which are square-free products of those in

Sy. Similarly define S∗, T ∗
y and T ∗.

Proposition 6.4. Let y = log x−log 2
log r and let x→ ∞. Then∣∣∣∣∣∣N(x, y)− rx

x

∑
a∈S∗

y

∑
s∈T∗

y

f(a, s, x)

∣∣∣∣∣∣ = O
(
r(1/2+ϵ)x

)
,

for any ϵ > 0.
The function f is defined as j(a, s)µ(a)µ(s)n(a, s)−1 if j(a, s) divides x and 0

otherwise

Proof. By the Lang-Trotter condition Proposition 3.9, a prime splits completely in
the field ∏

q|s

Kq

∏
q|a

La
q
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if, and only if, it splits in the field
La
a,s.

So the two fields are equal.
Therefore, by inclusion-exclusion,

N(x, y) =
∑

a∈S∗
y ,s∈T∗

y

µ(s)µ(a)πa,s(x).

By Proposition 6.3,

µ(s)µ(a)πa,s(x) = f(a, s, x)
rx

x
+O

(
rx/2

x
(deg a+ deg s)

)
The last step in the proof is to bound∑

a∈S∗
y ,s∈T∗

y

(deg a+ deg s),

which we will do crudely. First of all, we bound

|S∗
y | = 2|Sy|, |T ∗

y | = 2|Ty|

and
|Sy|+ |Ty| ≤ Zry/y,

for some constant Z, depending on both A and B. It follows then that for a ∈
S∗
y , s ∈ T ∗

y we have

deg a+ deg s ≤ y2Zry/y,

and so ∑
a∈S∗

y ,s∈T∗
y

(deg a+ deg s) ≤ y2Zry/y2Zry/y,

and now since y = (log x− log 2)/ log r∑
(deg a+ deg s) ≪ log xrZ

′x/y,

where Z ′ is another constant.
As x tends to infinity so too does y and so for x large enough, Z ′x/y ≤ ϵx. Also

log x < rϵx as well. So far, the remainder term has been bounded as

rx/2/x
∑

a∈S∗
y , s∈T∗

y

(deg a+ deg s) ≪ rx/2/x · rϵx,

as required. □

Let us now examine the coefficient of the main term of the estimate for N(x, y).

Proposition 6.5. The sum

δ(x) =
∑
a∈S∗

∑
s∈T∗

f(a, s, x)

converges absolutely. Furthermore, as x→ ∞ we have∣∣∣∣N(x, y)− δ(x)
rx

x

∣∣∣∣ = O

(
rx

x2

)
.

Finally, the value of δ(x) only depends on the congruence class of x modulo J
where J is a fixed positive integer depending on ϕ and a.
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Proof. First, we prove that j(a, s) is bounded independently of a and s, and further
that j(a, s) = 1 if a and s are prime to M1. In fact, we may have to replace M1

with a multiple of M1 in order to achieve this. To see that j(a, s) is bounded
independently of a and s, apply Proposition 5.9 ([HY01, Proposition 3.2(4)]), to
see that there is a finite extension L/Kv containing DivKsep(W ) where Kv is the
completion of K at an infinite place v. Since the algebraic closure of Fr in L will be
a finite extension, this establishes that j(a, s) is bounded. Let J be the maximum
value of j(a, s). Now, replaceM1 with a suitable multiple and such that the constant
field of La

(M1)
is equal to FrJ , in other words, La

(M1)
contains the maximal constant

field. Then for all a and s prime to M1 since La
a,s will be linearly disjoint from

La
(M1)

over K, the constant field of La
a,s must be equal to the constant field of K

(else the constant field of La
(M1)

would not be maximal). This establishes that δ(x)

only depends on the congruence class of x modulo J , because each term f(a, s, x)
only depends on x modulo j(a, s) which divides J .

Let us now analyze δ(x) by following the discussion on [GM86, p. 24],

f(a, s, x) = j(a, s)µ(a)µ(s)n(a, s)−1,

if j(a, s) divides x and is equal to zero otherwise.
Let S0 ⊂ S be the set of the primes of S which divideM1 coming from Corollary

4.1, similarly let T0 ⊆ T be the set of primes of T which have a common factor
with M1. Let S

′ = S \ S0 and T ′ = T \ T0.
Then applying Corollary 4.1 implies the following factorization

n(a, s) = n(a0, s0)n(a
′, s′) = n(a0, s0)|B/m′×| · |B/a′|,

where a0 ∈ S∗
0 , s0 ∈ T ∗

0 , a
′ ∈ S′∗ and s′ ∈ T ′∗ with

a = a0a
′, s = s0s

′.

We can now bound δ(x).

|δ(x)| ≤
∑

a0∈S∗
0 ,s0∈T∗

0

n(a0, s0)
−1

∑
a′∈S′∗,s∈T ′∗

|B/m′×|−1|B/a′|−1,

where m′ = lcm(a′, s′) in the above sum.
So we check to see if the summation over S′∗ and T ′∗ converges. We have∑
a′,s′

|B/m′×|−1 · |B/a′|−1 =
∑
a′

|B/a′|−1|B/a′×|−1
∑
s′

φ((a′, s′))|B/sB×|−1

≪
∑
a′

|B/a′×|−1|B/a′|
∏
q

(1 + φ(a′, q)|B/qB×|−1)

≪
∏
q

(1 + 2|B/q|−1|B/q×|−1)

which is a product that converges absolutely. □

Let z = x
2−ν log x, where ν is a constant to be chosen later such that ν ≥ 1/ log r.

Recalling thatMx(y, x) is the number of primes ℘ of degree x which split completely
in some La

q or Kq where q ∈ S or q ∈ T such that y ≤ deg q,deg q ≤ x, we have

Mx(y, x) ≤ N1 +M ′(y, z) +M ′(z, x/2 + log x) +M ′(x/2 + log x, x),
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where N1 is the number of places of K of degree x which split completely in some
La
1,q with y ≤ deg q ≤ x/2 and M ′(a, b) is the number of places of K of degree x

which split completely in some La
q,1 with a ≤ deg q ≤ b.

Proposition 6.6. We have the estimate

N1 +M ′(y, z) = O

(
rx

x2

)
as x tends to infinity.

Proof. First,
πq,1(x) ≤ rxj(q, 1)n(q, 1)−1x−1 + rx/2(deg q)/x,

and
π1,q(x) ≤ rxj(1, q)n(1, q)−1x−1 + rx/2(deg q)/x,

by Proposition 6.3. Now, incorporating the range of summation, we have

deg q,deg q > (log x− log 2)/ log r,

and for x large enough we have

n(1, q) = r2 deg q − 1, rdeg q(rdeg q − 1), or (rdeg q − 1)2,

and
n(q, 1) = rdeg q(rdeg q − 1),

by Corollary 4.1. Now, write

N1 ≤
∑

y≤i≤z

rxx−1(ri − 1)−2 · ri/i

and
M ′(y, z) ≤

∑
y≤i≤z

rx/2i/x.

Clearly, M ′(y, z) is within the stated error bound and we have

N1 ≤ rx/x
∑
i

(r−i/i)(1− r−i)−2 ≪ (rx/x)(r−y/y) ≪ rx/x2,

the second inequality coming from the fact that∫ ∞

y

r−z

1− r−z

2

dz = 1/ ln r

∫ 1

1−r−y

1/u2 du

using the substitution u = 1− r−z, and du = r−z ln r dz, we get

= −1/ ln r
(
1− 1/(1− r−y)

)
→ 0 as y → ∞,

which completes the estimate. □

We are left with estimating M ′(z, x/2 + log x) + M ′(x/2 + log x, x). We will
estimate M ′(z, x/2 + log x) by extending a Brun-Titchmarsh type result due to
Hsu [Hsu99]. The sum M ′(x/2 + log x, x) can be bounded by extending a result of
Akbary and Ghioca [AG09].

First, consider M ′(z, x/2+ log x) which is the sum over primes of K of degree x
which split completely in some La

q,1 with z ≤ deg q ≤ x/2 + log x. We will do this
using a Brun-Titchmarsh theorem. The result we need is a slight generalization of
[Hsu99, Theorem 4.3].
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Proposition 6.7. We have the bound

M ′(z, x/2 + log x) = O(rx lnx/x2).

Proof. Let ℘ be a prime counted by M ′(z, x/2 + log x). Applying [Gos96, Sec-
tion 4.14], we can see that the characteristic polynomial of Frob℘ is a degree one
polynomial X − b and furthermore,

B/(b− 1) ∼= ψ(F℘)

and

(b) = (i∗℘)m,

for some integer m.
If p is an ideal of B, then there are at most [K : ι(κ)] places of K whose reduction

has characteristic p.
Therefore, the number of ℘ counted by M ′(z, x/2 + log x) with m ≥ 2 are at

most a constant times the number of prime ideals p of B with deg p ≤ x/2. By the
prime number theorem for the ring B, this is O(rx/2/x).

So we may assume that m = 1 and since ℘ is counted by M ′(z, x/2 + log x) we
have that there is an ideal a such that

z < deg a < x/2 + log x

and a = q is a prime ideal of B. We have that

ψ(F℘)[a] ∼= (B/a),

which implies that a divides (b− 1). In other words,

b ≡ 1 (mod a),

and (b) is a prime ideal of B.
Now, let π(x; 1, a) denote the number of prime ideals of B of the form (b) with

b ≡ 1 mod a.
Then we have the estimate

M ′(z, x/2 + log x) =
∑′

π(x; 1, q) +O(rx/2/x),

where the dash over the summation means that we sum over the primes q of B with

x/2− ν lnx < deg q ≤ x/2 + log x.

For deg q in the range z to x/2 + log x we have

x− deg q− 7g − 4D + 4 ≥ x/2− log x− 7g − 4D + 4 > 0,

for x large enough. So Theorem 9.2, which we will prove in Section 9, applies and
we have

x− deg q− 7g − 4D + 6 ≥ x/2− log x− 7D − 4D + 6 =≥ C ′x,

for x large enough, where C ′ is a constant. So

π(x; 1, q) ≪ rx/(xφ(q)) = rx/x(rdeg q − 1)

and summing over all q with deg q in the range z ≤ deg q < x/2 + lnx can be
bounded as

rx/x
∑

z≤i<x/2+log x

ri/i(ri − 1) ≪ rx lnx/x2,

completing the estimate. □
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Now, we have dealt with the middle range. The remainder can be dealt with
by a technique from [AG09], which can be thought of as an analogue of Hooley’s
technique to deal with the tail end of the error.

We will introduce the result which is essentially [AG09, Proposition 5.1].

Proposition 6.8 ([AG09, Proposition 5.1]). The number of places ℘ such that the
reduction of a modulo ℘ generates a submodule of size at most qℓ is bounded by a
constant times q2ℓ and the constant is independent of ℓ.

Remark 6.9. The result [AG09, Proposition 5.1] is only for A = Fq[T ], but the
result can be extended to our case using the Riemann-Roch theorem.

Proposition 6.10. We have that

M ′(x/2 + log x, x) = O(rx/x2).

Proof. Suppose ℘ is a prime which splits completely in one of the fields La
q,1 with

x/2 + log x ≤ deg q ≤ x. Then the reduction of a modulo ℘ has size at most

rx−(x/2+log x) = rx/2−log x

and so by [AG09, Proposition 5.1], the number of such ℘ is at most a constant
times

rx−2 ln x = rx/x2 log r.

Since r ≥ 2 the stated bound follows. □

On combining Propositions 6.1, 6.5, 6.6 and 6.10 we get the required estimate
for Na(x).

Theorem 6.11. We have the estimate

Na(x) = δ(x)
rx

x
+O

(
rx log x

x2

)
,

as x lies in a fixed congruence class modulo J , and x tends to infinity.

We also get the following generalization of [HY01, Theorem 4.6].

Theorem 6.12. Let κ be a global function field, with constant field Fr, ∞ a fixed
place of κ, B the ring of elements of κ regular everywhere except possibly ∞, K
a global function field which is a B-field of generic characteristic, ψ : B → K{τ}
a Drinfeld module of rank 1, and a ∈ K a non-torsion element for ψ. Let N ′

a(x)
denote the number of primes ℘ of K for which a generates ψ(F℘) as a B-module.
Then there is a fixed modulus J ≥ 1 and constants δ(0), . . . , δ(J − 1) such that as
x ≡ i mod J and x→ ∞, we have

N ′
a(x) = δ(i)

rx

x
+O

(
rx log x

x2

)
.

7. Positive density

If for some q ∈ S we have La
q = K or for some q ∈ T we have Kq = K, then it

follows that a is a primitive point for only finitely many primes ℘. In this section,
we prove the converse to the above statement. That is, if Kq, L

a
q ̸= K for all

q ∈ T , q ∈ S then δ(x) is positive as x lies in some non-empty union of arithmetic
progressions. Essentially, this will follow from a principal in [KL09], which we must
combine with the reasoning of [GM86].
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If all the extensions La
q and Kq are geometric then we have the following result

of Liu and the first author, which we have rewritten slightly for convenience. Es-
sentially, it says that if a family of extensions are mostly linearly disjoint, then you
can find a family of extensions in which distinct extensions are linearly disjoint.

Lemma 7.1 ([KL09, Lemma 15]). Let K be a countable family of finite, separable,
geometric extensions of K. Suppose that there is a subset K′ such that K\K′ is
finite and distinct extensions in K′ are linearly disjoint. Then there is a family of
extensions K′′ such that distinct extensions in K′′ are linearly disjoint and K covers
K′′. This means that if L ∈ K then there exists L′ ∈ K′′ with L′ ⊆ L and if L′ ∈ K′′

then there exists L ∈ K with L′ ⊆ L.

Using this lemma, one concludes that the density of primes that do not split
completely in any L′ ∈ K′′ is positive, and this is a lower bound for the density of
primes that do not split completely in any L ∈ K. For the proofs of the following
theorems trace through the proof of [KL09, Theorem 3’].

Theorem 7.2. Recall that for primes q of A, we have Kq = K(ψ[q]) and for primes
q of B, we have La

q = K(q−1⟨a⟩).
Put K1 = {Kq} ∪ {La

q} where q runs over primes of A and q runs over primes
of B of first-degree, and put K2 = {La

q} where q runs over all primes of B.
If Ki is a family of non-trivial, geometric extensions of K, then the density of

primes that do not split completely in any member of Ki is δi > 0.
By Theorems 6.11 and 6.12, we have

Na(x) ∼ δ1πK(x)

and

N ′
a(x) ∼ δ2(x)πK(x),

where πK(x) is the number of primes of K of degree x.

Extending the ideas of [KL09], we are able to drop the assumption that all the
extensions are geometric. We follow the proof of [KL09, Theorem 3’] with additional
considerations for the case that not all of the extensions are geometric. We must
also use the arguments of [GM86].

Let us review the key notations from the previous section.

(i) T (resp. T0, resp. T
′) - the set of prime ideals of A, (resp. which divide M1,

resp. which are coprime to M1)
(ii) T ∗, (resp. T ∗

0 , resp. T
′∗) - ideals of A which are square-free products of ideals

in T (resp. T0, resp. T
′).

(iii) S (resp. S0, resp. S
′) - the set of prime ideals of B which are first-degree over

A (resp. and which divide M1, resp. and which are coprime to M1)
(iv) S∗ (resp. S∗

0 , resp. S
′∗) - the set of ideals of B which are square-free products

of ideals in S (resp. S0, resp. S
′),

(v) n(a, s) - the degree [La
a,s : K]

(vi) Fa,s - the algebraic closure of Fr inside La
a,s

(vii) j(a, s) - the degree [Fa,s : Fr]

(viii) f(a, s, x) =

{
j(a, s)µ(a)µ(s)n(a, s)−1 if j(a, s)|x

0 otherwise
(ix) δ(x) =

∑
a,s f(a, s, x)



ARTIN’S CONJECTURE FOR DRINFELD MODULES 27

Lemma 7.3. As a runs over ideals of S∗ and s runs over ideals of T ∗, the degree
j(a, s) attains its maximum, say J , for some a ∈ S∗

0 and s0 ∈ T ∗
0 , if we allow

ourselves to add at most one exceptional prime to each of S0 and T0.

Proof. To see this, we can appeal to the fact that the extensions La
q for q prime

ideals of B coprime to M1 are pairwise linearly disjoint over K by Corollary 4.1, so
at most one has a non-trivial constant field extension. Similarly, the fields Kq as
q runs over prime ideals of A coprime to M1 are pairwise linearly disjoint. Letting
these exceptions be absorbed by S0 and T0, we now assume the extensions La

a′,s′/K

are geometric extensions of K for a′ ∈ S′∗ and s′ ∈ T ′∗.
Alternatively, we can examine the constant fields of La

a′,s′ and notice that all the
division fields are contained in a finite extension of K∞, by Proposition 5.9, and so
the size of the constant field of La

a′,s′ must be bounded independently of a′ and s′.
By this argument, we only obtain that the constant field extensions are of bounded
degree. □

We have the following theorem of Poonen.

Theorem 7.4 ([Poo95, Theorem 8]). For fixed A, there is a constant C > 0 such
that if ϕ is a rank 1 Drinfeld A-module over a global field L with [L : K] = d, then

#(ϕL)tors ≤ C · d log log d.

For each A, this bound is best possible up to a constant factor.

Applying Poonen’s result to our situation gives:

Corollary 7.5. There exists a constant C ′ depending on B and [K : ι(κ)] such
that if La

q ̸= K and Kq ̸= K for all primes q ∈ S and primes q ∈ T with deg q ≤ C ′

and deg q ≤ C ′ then La
q ̸= K and Kq ̸= K for all primes q ∈ S and primes q ∈ T .

We now give our positive density result. We may phrase the result as saying
that the density of primes satisfying Artin’s conjecture is positive, unless there is a
good reason (read: K contains non-trivial division points of ⟨a⟩).

Theorem 7.6. Suppose that La
q ̸= K for all primes q ∈ S with deg q ≤ C ′ and

Kq ̸= K for all primes q ∈ T with deg q ≤ C ′. Then there is a non-empty set of
conjugacy classes Z modulo J such that if (x (mod J)) ∈ Z then δ(x) > 0.

If all the extensions Kq and La
q are geometric and if FK is the constant field of

K, then we may take J = [FK : Fr] and Z = {0} and δ(x) = δ > 0 for all J |x.

Proof. Following along with [KL09, Lemma 15 and Theorem 17] and the discussion
after [GM86, Lemma 11], we will show that δ(x) = δ0(x)δ1 where δ0(x) only depends
on the congruence class of x modulo J . Actually, δ0(x) will be the density of primes
of degree x that do not split completely in any of the fields La

a, Kq where q ∈ S0

and q ∈ T0.
By Corollary 4.1, if a ∈ S∗ and s ∈ T ∗, then

n(a, s) = n(a0, s0)n(a
′, s′)

where a0 ∈ S∗
0 and s0 ∈ T ∗

0 and a′ ∈ S′∗ and s′ ∈ T ′∗ Corollary 4.1 also gives that
n(a′, s′) = |ψ[a′]| · |(B/b)×| where b = lcm(a′, s′B).

Furthermore, applying Lemma 7.3 gives that La
a′,s′/K is a geometric extension.
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In any case, we have that

δ(x) =
∑
a,s

f(a, s, x)

=
∑′

a0,s0
f(a0, s0, x)

∑′′

a′,s′
f(a′, s′, x)

= δ0(x) · δ1.
The first sum is taken over a0 ∈ S∗

0 and s0 ∈ T ∗
0 . The second sum is taken

over a′ ∈ S′∗ and s′ ∈ T ′∗ Notice that δ1 does not depend on x since f(a′, s′, x)
corresponds only to geometric extensions of K. To see that δ1 > 0, let us expand
δ1 in a calculation similar to [GM86]. We have

δ1 =
∑
s′

µ(s′)n(1, s′)−1
∑
a′

µ(a′)φ((a′, s′))/n(a′, 1),

and just as in [GM86]

=
∑
s′

µ(s′)n(1, s′)−1
∏
q

(
1− φ((q, s′))

n(q, 1)

)
.

Since φ((q, s′)) = 1 unless q|s′, we can bring most of the product over q ∈ S to the
front, and we leave behind a term in the sum over s′,

=
∏
q

(
1− n(q, 1)−1

)∑
s′

µ(s′)n(1, s′)−1
∏
q|s′

(
1− r− deg q

)
(1− n(q, 1)−1)−1.

Now, notice that the term in the sum over s′ is multiplicative, and so

=
∏
q

(
1− n(q, 1)−1

)
∏
q

(
1− n(1, q)−1

)
∏
q

[
1− n(1, q)−1

(
(1− r− deg q1)(1− rdeg q2)

(1− n(q1, 1)−1)(1− n(q2, 1)−1)

)]
∏
q

[
1− n(1, q)−1

(
(1− r− deg q)(1− n(q, 1)−1)−1

)]
where the first product is over q ∈ S′, the second product is over q ∈ T ′ which are
inert in B, the second product is over primes q ∈ T ′ such that qB factors as q1q2
with q1 ̸= q2, and the third product is over primes q ∈ T ′ with qB = q2. Finally,
bringing together the product over q ∈ S′ with the product over primes q ∈ T ′

which are not inert in B gives

=
∏
q

(
1− (r2 deg q − 1)−1

)
∏
q

(
1− 2

(rdeg q − 1)(rdeg q)
+

1

r2 deg q(rdeg q − 1)2
− 1

r2 deg q

)
∏
q

(
1− 1

(rdeg q − 1)rdeg q
− 1

r2 deg q

)
,
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the first product being over inert primes, the second over split primes, and the third
over ramified primes.

This looks different than the infinite product in [GM86] (even after replacing
rdeg q with q) but you can rearrange it to be sufficiently analogous. In particular
δ1 > 0. We note that if κ/F is a separable extension then the product over ramified
primes is a finite product. But if κ/F is inseparable, then all primes fall into the
third category. In this case, the product looks different than the infinite product
in [GM86].

Now onto δ0 where we take the approach of Liu and the first author from [KL09].
It is not really possible to take the approach of [GM86], as we are examining a much
broader collection of objects. First of all, note that if s divides t and a divides b
then j(a, s) divides j(b, t). Let J be the maximum value of j(a0, s0) as a0 ∈ S∗

0 and
s0 ∈ T ∗

0 . Let J ′ = [FK : Fr]. Then if we suppose x ≡ 0 (mod J ′) and x/J ′ ≡ 1
mod J/J ′, we have that

δ0(x) =
∑
a0,s0

f(a0, s0, x),

where the sum is now over a0 and s0 such that j(a0, s0) = J ′ (in other words, this
sum is over the a0 and s0 which come from geometric extensions of K). This sum is
non-empty because j(1, 1) = J ′ refers to the constant field of K. By restricting to
x/J ′ ≡ 1 mod J/J ′, we may consider only the geometric extensions. But now we
can apply [KL09, Lemma 15] to see that as long as La

q,1 ̸= K and Kq ̸= K for all
primes q ∈ T and primes q ∈ S, we have δ(x) > 0 for x/J ′ ≡ 1 (mod J)/J ′. In fact,
this lemma requires that almost all the extensions be mutually linearly disjoint, but
this condition trivially holds for a finite collection of fields. By Corollary 7.5 and
the hypothesis of the theorem, we have that Kq ̸= K for all primes q ∈ T and
La
q ̸= K for all q ∈ S. This concludes the proof of the theorem. □

Remark 7.7. In fact the above analysis applies as long as gcd(J, x) = J ′. If not,
write J ′ < d = gcd(J, x). Certainly δ(x) = δ0(x)δ1 and δ0(x) is the density of
primes of K which do not split completely in any Kq or La

q as the primes q ∈ T0
and primes q ∈ S0. But in this case the sum δ1 is over a0 and s0 with j(a0, s0)|d.
Now, even though we require that La

q ̸= K and Kq ̸= K, it is possible that one of
the extensions in question is exactly La

q = K · Frd , say. In this case we would have
δ0(x) = 0. We cannot eliminate this case (in fact it is not hard to think of Drinfeld
modules which have torsion that is a constant field extension), so we must conclude
our analysis without saying anything further.

8. Examples

Here, we make a quick comparison to Artin’s conjecture. Let Lq = Q( q
√
a, q

√
1)

and assume a is non-torsion (that is, a ̸= 0,±1). Then the condition that Lq ̸= Q
for all primes q is equivalent to the condition that a is not equal to a square. In this
section, we give examples of Drinfeld modules for which all extensions La

q and Kq

are non-trivial. If we assume that r ̸= 2, all the relevant extensions are non-trivial
and geometric. This implies that the constant δ(x) is a positive constant as long
as x is divisible by the degree of the constant field of K over Fr. This family of
examples includes those considered by Hsu and Yu in [HY01], but extends them by
considering the case when deg∞ > 1.
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First we prove that the positivity results of [HY01] can be generalized to the
situation when deg∞ > 1. Let X be a smooth projective curve defined over Fr and
∞ a point of X of degree D. Let B be the ring of functions of X regular everywhere
except possibly at ∞. Let κ be the fraction field of B.

Let κ∞ be the completion of κ with respect to the valuation at ∞. Let F∞ ⊂ κ∞
be the residue field of κ∞. Let sgn : κ∗∞ → F∗

∞ be a sign function. That is, sgn is a
group homomorphism and sgn restricts to the identity on F∗

∞. If σ ∈ Gal(F∞/Fr)
then a twist of sgn is a function σ ◦ sgn.

Let H be the maximal unramified extension of κ which is completely split at ∞.
That is, H is the Hilbert class field of B, and if OH is the integral closure of B in
H, then any principal ideal of B is the norm of an ideal in OH , and vice versa.

If C∞ is the completion of an algebraic closure of κ∞ and L ⊂ C∞. Then L is a
B-field in a natural way using B ⊆ κ ⊆ C∞. If ρ : B → L{τ} is a Drinfeld module
then put µρ(a) to be the leading coefficient of ρa for each a ∈ B and ρ is called sgn-
normalized if µρ is a twist of sgn. Let ϕ : B → L{τ} be a sgn-normalized Drinfeld
module of rank 1 and let H+ be the field generated by κ and the coefficients of ψ.
So in fact ψ : B → H+{τ}.

Corollary 8.1 ([Gos96, Corollary 7.4.9]). The Galois group Gal(H+/κ) ∼= I/P+

where I is the group of fractional ideals of B and P+ is the subgroup of principal
fractional ideals generated by positive elements.

So H+ is the narrow class field of B relative to sgn.

Proposition 8.2 ([Gos96, Corollary 7.5.5]). Gal(H+(ψ[a])/H+) ∼= (B/a)∗

Proposition 8.3 ([Gos96, Proposition 7.5.18]). The extension H+(ψ[pm])/H+ is
totally ramified at all primes of H+ lying above p.

Let Ka = H+(ψ[a]). Now let W be the B-submodule of H+ generated by a.
Put La

a as in Definition 3.5.
If r ̸= 2 or if r = 2 and a is not divisible by any degree 1 prime, then (B/a)∗

generates B/a additively.
Recalling that [DivH+(W ) :W ] is finite, there is c ∈ B such that cDivH+(W ) ⊆

W . Then if r ̸= 2, applying [Pin16, Theorem 5.2], implies that cHomB(W,Tad) ⊆ ∆
where ∆ is the image of the absolute Galois group.

If a is such that (B/a)∗ generates B/a additively, then the proof of [HY01,
Theorem 2.6(5)] tells us that La

a/H
+ is a geometric extension.

Combining this, if r ̸= 2, the fields La
p are linearly disjoint, geometric extensions

of H+ as p runs over primes of B. If r = 2, we can say the same if we exclude
degree 1 primes of B.

If we assume that DivH+(W )/(W )[p] ̸∼= (B/p)2 if r = 2 and deg p = 1, then
La
p ̸= H+ for all p.
Applying Theorem 7.6 (or the analytic arguments of [HY01] combined with the

new estimate Theorem 9.2) gives the following result. This is a generalization of
Artin’s conjecture for Drinfeld modules of rank 1 (cf. [HY01, Theorem 4.6]) to the
case when deg∞ > 1.

Theorem 8.4. Suppose that ψ : B → H+{τ} is a sgn-normalized Drinfeld module
of rank 1. Assume r ̸= 2. Let Na(x) denote the number of primes ℘ of H+ of degree
x for which a modulo ℘ generates F℘ as an B-module. Then there is a constant
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δ > 0 such that
Na(x) = δrx/x+O(rx log x/x2)

as x tends to infinity, with x ≡ 0 mod D.

Remark 8.5. If r = 2, then if we assume that cDivH+(W ) ⊆ W and c has no
prime divisor of degree 1, then it follows that every extension La

q/K is non-trivial
for all primes q of A. But we cannot guarantee that the extensions are geometric
in case q is of degree 1. So in this case, the density of primes is still positive, but
the constant is not so nice, and it depends on the congruence class of x modulo J
for some J .

Now, suppose that X,∞, κ,B, ψ,H+ are as above and F is a subfield of κ such
that [κ : F ] = 2 such that there is a unique prime lying below ∞ (κ/F may be
separable or inseparable). Let ∞′ be the unique prime of F lying below ∞. Let A
be B ∩ F , so that B is the integral closure of A in κ.

Applying Theorems 1.4 and 7.6, we obtain examples of Drinfeld modules of rank
2 for which the density is positive.

Theorem 8.6. Let ϕ : A→ H+{τ} be the restriction of ψ to A = B ∩ F . Assume
r ̸= 2. Let Na(x) be the number of primes ℘ of H+ of degree x such that a modulo
℘ generates F℘ as an A-module under the action of ϕ.

There exists δ > 0 such that

Na(x) = δrx/x+O(rx log x/x2),

as x tends to infinity, with x ≡ 0 mod D.

Remark 8.7. The case when r = 2 can be dealt with as in Remark 8.5.

9. Extension of the Brun-Titchmarsh theorem

We need to bound the number of primes of degree x congruent to 1 modulo q
where deg q is approximately x/2. As the degree of q gets larger, this estimate be-
comes unnecessary. If the degree of q is smaller the error term from the Chebotarev
density theorem is manageable.

Let F be the function field of a curve X defined over Fr and ∞ a closed point
of X of degree D and A be the ring of elements of F which are regular everywhere
except possibly at ∞. In this section, we prove a Brun-Titchmarsh theorem for A,
which extends the work of Hsu in [Hsu99], where it is assumed that deg∞ = 1. We
use Hsu’s method to prove a version of the Brun-Titchmarsh theorem where deg∞
is not required to be 1.

Let a be an ideal of A and b ∈ A be coprime to a.
In the case that deg∞ = 1, we have the following theorem of Hsu. In the

statement of this theorem, g refers to the genus of X, h is the class number of A,
L(·) is the L-function of X, N is a positive integer, H is the Hilbert class field of
A, A′ is the integral closure of A in H, and πH(N ; b, a) is the number of primes of
℘ of A′, with Norm(℘) = (P ), (P ) a principal ideal of A, degP = N , sgnP = 1,
and P ≡ b mod a.

Theorem 9.1 ([Hsu99, Theorem 4.3]). There exists effective constants C1 and C2

depending only on g and h such that if N > deg a+ C1 + C2 ln deg a then we have

πH(N ; b, a) ≤ hrN

φ(a) · (K1 + 1− 2g) · L(1/r)
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where

K1 = min

{[
N − 1

h

]
,

[
N − deg a− C1 − C2 ln deg a+ 4g

2

]}
.

We are able to adapt the arguments of Hsu to prove that a similar theorem
holds when D = deg∞ ≠ 1. In the following theorem, π(N ; b, a) is the number of
principal prime ideals of A of the form (P ) with P ≡ b mod a, and degP = N .
Notice that we count principal prime ideals of A while Hsu counts the primes of A′

whose norm is principal and generated by a positive element in A

Theorem 9.2. Suppose N ≥ deg a+ 4D+ 7g − 4 and N is larger than some fixed
constant. Then

π(N ; b, a) ≤ 2(1− r−1)rDrN

φ(a) · (N − deg a− 7g − 4D + 6) · L(1/r)
.

One can also check that the arguments of [Hsu99] can be adapted to bound the
number of prime ideals of the form (P ) with P ≡ b mod a and sgn(P ) = c where
sgn is a sign function and c is an element of F∞.

Fractional ideals of A correspond to divisors of X supported outside ∞. The
degree function will be taken relative to Fr. For an ideal I of A, put deg I =
logr(|A/I|), for a ∈ A put deg a = logr(|A/(a)|), for a prime P = (OP ,mP ), an
ordered pair of a discrete valuation ring and its corresponding maximal ideal put
degP = logr(|OP /mP |) and for a divisorD =

∑
P nP ·P put degD =

∑
P nP degP .

A divisor of X is effective if all nP ≥ 0. Recall the Riemann-Roch theorem.

Theorem 9.3 ([Ros02, Theorem 5.4]). Let D be a divisor on X and let C be a
canonical divisor. Then

ℓ(D)− ℓ(C −D) = degD− g + 1,

where
ℓ(D) = dimFr (L(D)),

and
L(D) = {x ∈ F | Div(x) +D ≥ 0}.

In particular L(D) ̸= ∅ if degD ≥ g and ℓ(D) = degD− g+1 if degD ≥ 2g− 1.
Let F∞ be the completion of F with respect to the prime ∞. Then if F∞ is the

residue field at ∞, we have F∞ ⊆ F∞.
A sign function on F∞ is a group homomorphism sgn : F ∗

∞ → F∗
∞ which is the

identity on F∗
∞. Given a sign function, sgn, a uniformizer can be chosen π ∈ F∞

with sgn(π) = 1. To see this just choose π ∈ m∞ −m2
∞ and scale by an element of

F∗
∞ to obtain sgn(π) = 1. Since sgn is trivial on U1 = {x ∈ O∞ | x ≡ 1 mod m∞}

we may choose π ∈ F . Recall that the differential of π gives a divisor, see [Sti09,
Chapter 4].

Taking C = Div(dπ) gives a canonical divisor class which is supported outside
∞ and so corresponds to a fractional ideal of A, which we also denote by C. There
is an isomorphism F∞ ∼= F∞((π)).

Let tracerp : Fr → Fp be the trace map where p = Char(Fr). So, trace
rD

r : F∞ →
Fr and tracer

D

p : F∞ → Fp will also be trace maps and clearly tracerp ◦ tracer
D

r =

tracer
D

p . For f ∈ F∞, let res∞(f dπ) be the residue of f dπ at ∞ as in [Tat68],
see also [Sti09, Chapter 4]. In particular if f =

∑
n≥Nf

cnπ
n then res∞(f dπ) =

tracer
D

r (c−1).



ARTIN’S CONJECTURE FOR DRINFELD MODULES 33

Define E : Fr → C× by E(x) = exp(tracerp(x) · 2πi/p). Define T : F∞ → C× by
T (f) = E(res∞(f dπ)). Finally, define a bilinear form B(x, f) = Tf (x) = T (fx) so
B : F∞ × F∞ → C×.

Let I(y,N) = {x ∈ F∞ | ord∞(x− y) ≥ N}, which is an interval in F∞ centred
at y. We can define a Haar measure µ on F∞ by putting µ(I(0, 0))(= µ(O∞)) = 1.

Let a be a fractional ideal of A and k be an integer. Notice that

L(k∞− a) ⊆ I(0,−k).
If

kD − deg a ≥ 2g − 1

then there is a Fr-subspace V ⊆ I(0,−k) with
I(0,−k) = L(k∞− a)⊕ V.

Again, by the Riemann-Roch Theorem,

I(0,−n) = L(n∞− a)⊕ V

for n ≥ k.
In particular, F∞ = a⊕ V . This implies that

µ(F∞/a) = µ(V ) = rDn · r−Dn+deg a+g−1 = rdeg a+g−1.

Also, if we write a = Uk ⊕ L(k∞− a) then

F∞ = a⊕ V = Uk ⊕ L(k∞− a)⊕ V = Uk ⊕ I(0,−k)
as long as kD − deg a ≥ 2g − 1.

Remark 9.4. Although, the lemmas and the general strategy for the proof come
from [Hsu99], it should be noted that this result is for deg∞ ≥ 1 and the main
result of [Hsu99] assumes deg∞ = 1. For example, in the following lemma, the
proof in [Hsu99] does not apply verbatim to the case deg∞ > 1.

Lemma 9.5 ([Hsu99, Lemmas 2.1 and 2.2]). Let y ∈ F∞−F and b be a fractional
ideal of A. Then the closure of by + b is equal to F∞.

Proof. Fix k such that kD − deg b ≥ 2g. Then write b = Uk ⊕ L(k∞− b). Then
we have a decomposition F∞ = Uk ⊕ I(0,−k).

The pigeon hole principle implies that 0 is an accumulation point for Uk + yb
since y /∈ F .

Now let x ∈ F∞. Write x = u + x′ with x′ ∈ I(0,−k), u ∈ Uk. Let N > 0 be
given. There is an element Y ∈ Uk + yb with ord∞(Y ) ≥ N + k. Write ord∞(Y ) =
N ′ + k ≥ N + k. So if a ∈ L((N ′ + 2k)∞) then we have ord∞(aY ) ≥ −k, that is
aY ∈ I(0,−k). Furthermore, aY ∈ I(0, N ′) if and only if ord∞(a) +N ′ + k ≥ +N ′

that is a ∈ L(k∞). By the Riemann-Roch theorem, the aY as a ranges over
L((N ′ + 2k)∞)/L(k∞) give distinct classes in I(0,−k)/I(0, N ′). But both have
the same dimension over Fr, so there exists a such that aY − x′ ∈ I(0, N ′) which
proves the result. □

Theorem 9.6 ([Hsu99, Theorem 2.3]). Recall that B : F∞ × F∞ → C× is defined
by

B(f, g) = T (fg) = exp(tracerp(res∞(fg dπ))2πi/p).

Then, under B, F∞ is identified with its Pontryagin dual, and the orthogonal
complement of any fractional ideal a of A, under B is a−1C−1.
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Proof. First let us prove that B is non-degenerate. Then the isomorphism

F∞ ∼= F∞((π))

will show that the dual of F∞ under B is F∞.
Suppose that x ∈ F∞ is such that B(x, y) = 1 for all y ∈ F∞. That would mean

that tracerp res∞(xy dπ) = 0 for all y. Then writing x =
∑
xiπ

i and y =
∑
yjπ

j ,
with xi, yj ∈ F∞, we have

tracerp(res∞(xy dπ)) =
∑

tracerp(xjy−1−j),

and by letting y vary over all F∞, we see that xj = 0 for all j, (remember that
tracerp(xy) is non-degenerate on F∞). So x = 0 and B is non-degenerate.

Let a ∈ a and x ∈ a−1C−1. Then the divisor of the differential ax dπ is effective
which implies res∞(ax dπ) = 0 by the residue theorem. So B(a, x) = 1. This
proves a−1C−1 ⊆ a⊥.

Suppose that x ∈ F∞ with B(a, x) = 1 for all a ∈ a (i.e., x ∈ a⊥.) This implies
that res∞(ax dπ) = 0. Suppose x /∈ F . Then x · A + a−1C−1 ⊆ a⊥. Taking
B = A ∩ a−1C−1 implies that Bx + B ⊆ a⊥ which implies that a⊥ = F∞ by
Lemma 9.5, which is impossible.

So x ∈ F . Say x /∈ a−1C−1. We have a−1C−1 ⊆ a⊥ ⊆ F . In this case, there exists
f ∈ a such that xf dπ has order −1 at some prime of A and non-negative order at
every other prime of A. By the residue theorem again, we have res∞(xf dπ) ̸= 0,
that is x /∈ a⊥. This proves that a⊥ = a−1C−1. □

If f : F∞ → C is locally constant with compact support then define

f̂(x) =

∫
F∞

f(y)Tx(y) dy.

Lemma 9.7 ([Hsu99, Lemma 2.4]). Define Φ(x) = 1 if x ∈ O∞ and 0 otherwise.
Then

Φ̂ = Φ, ⟨Φ,Φ⟩ =
∫
F∞

Φ(y)Φ(y) dy = 1.

Proof. Consider

Φ̂(x) =

∫
O∞

Tx(y) dy

=

∫
O∞

exp(− trace(res∞(xy dπ))2πi/p) dy

If x ∈ O∞ then res∞(xy dπ) = 0. If x /∈ O∞ then write

x = x−kπ
−k + · · ·+ x−1π

−1 + x′ ̸= x′,

where x′ ∈ O∞, and then

Φ̂(x) =
∑

y0,y1,...,yk−1

etrace(
∑

j x−jyj−1)2πi/pµ(πkO∞)

=

k∏
j=1

 ∑
y∈F∞

etrace(x−jy)2πi/p

 r−Dk

= 0
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since at least one of x−k, . . . , x−1 is non-zero and trace(xy) is a non-degenerate
bilinear form on F∞. □

Fix a positive integers N and K, let f ∈ F∞ and let m1 and m2 be the least
integers satisfying m1 ·D ≥ K + 2g − 2, and m2 ·D ≥ N . Put m = max{m1,m2}.
Define ϕ : F∞ → C by

ϕ(y) = rDmTf (y)Φ(y/π
m).

Lemma 9.8 ([Hsu99, Lemma 2.5]). We have

(i) ϕ(y) = 0 if ord∞(y) < m1.
(ii) ∥ϕ∥22 = rDm.

(iii) ϕ̂(x) = 1 if x ∈ I(f,−m2).

Proof. If ord∞(y) < m1 then ord∞(y/πm) < m1 −m < 0 so Φ(y/πm) = 0.
Consider

∥ϕ∥22 =

∫
F∞

r2Dm|Tf (y)|2Φ(y/πm)2 dy

= r2Dm

∫
F∞

Φ(y/πm)2 dy

Substituting x = y/πm gives

= rDm

∫
F∞

Φ(x)2 dx

= rDm

Finally, suppose that x ∈ F∞ and ord∞(x− f) ≥ −m2 then

ϕ̂(x) =

∫
F∞

rDmTf (y)Φ(y/π
m)Tx(y) dy

= rDm

∫
F∞

Tf−x(y)Φ(y/π
m) dy

Substituting z = y/πm gives

=

∫
F∞

Φ(z)T(x−f)πm(z) dz

= Φ̂((x− f)πm)

Finally, because ord∞((x− f)πm) ≥ −m2 +m ≥ 0, we have

= 1,

proving the final statement. □

Let T = F∞/C−1, and then [Hsu99, Theorem 2.3] implies that T̂ ∼= A under the
bilinear form B. That is if b ∈ A, then define fb(x) = B(x, b) for all x ∈ F∞. By
[Hsu99, Theorem 2.3], fb : F∞/C−1 → C satisfies fb(x + y) = fb(x)fb(y). That is,

b 7→ fb defines a map A→ T̂, which must be onto.
Furthermore, using the canonical map F∞ → T, we can define an interval in T

to be the image of an interval in F∞, and we can define a measure on T in a similar
way.
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That is, put

IT(u,M) = {y + C−1 | ord∞(y +m− u) ≥M for some m ∈ C−1}.
Elements u1, . . . , uℓ of T are called anM -space if IT(ui,M) are mutually disjoint.
Let V be the integer defined by the inequality

2g − 2 < VD ≤ 2g − 2 +D,

then

I(0, V ) ∩ C−1 = L(C − V∞) = {0},
since deg C − V D < 0. So

I(0, V ) → IT(0, V )

is a bijection.
Define ϕ1(x) = ϕ(x) if x + C−1 ∈ IT(0, V ) and 0 otherwise. Now, if x ∈

I(f,−m2) ∩A we have

ϕ̂1(x) =

∫
T
ϕ1(y)Ty(x) dy

=

∫
F∞

ϕ(y)Ty(x) dy

since ϕ1(x+ α) = ϕ(x) if x ∈ I(0, V ) and α ∈ C−1

= ϕ̂(x) = 1.

Theorem 9.9. Let N , K, m1, and m2 be positive integers with Dm1 ≥ K+2g−2,
Dm2 ≥ N and f ∈ F∞. Suppose u1, . . . , uℓ is a m1-space in T and S : T → C
such that

S(y) =
∑

x∈I(f,−m2)∩A

axTx(y),

for each y ∈ F∞, where ax ∈ C. Then

ℓ∑
i=1

|S(ui)|2 ≤ rD(m+1)
∑

x∈I(f,−m2)∩A

|ax|2,

where m = sup{m1,m2}.

Proof. Notice that Ŝϕ̂1 = Ŝ since ϕ̂1(x) = 1 if x ∈ I(f,−m2) and Ŝ(x) = 0 if
x /∈ I(f,−m2).

By the properties of convolution S = ϕ1 ∗ S.
So

S(u) =

∫
T
ϕ1(u− y)S(y) dy.

By the definition of ϕ1, we get

S(u) =

∫
F∞

ϕ(u− y)S(y) dy.

Substituting ui for u gives,

S(ui) =

∫
I(ui,m1)

ϕ(ui − y)S(y) dy,

since ϕ(ui − y) = 0 if ord∞(ui − y) < m1.
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Then

|S(ui)2| = rDm

∫
I(ui,m1)

|S(y)|2 dy.

Finally since {ui} form an m1-space, we can bound the sum of |S(ui)|2 by∑
i

|S(ui)|2 ≤ rDm

∫
I(0,−1)

|S(y)|2 dy,

since each ui + C−1 has a representative in I(0,−1), by writing I(0,−1) = L(C +
∞)⊕ V and noticing that I(0,−k) = L(C + k∞)⊕ V for each k ≥ 1.

The integral can be bounded by

rD(m+1)
∑

|ax|2,

as required. □

Let G1, . . . , Gn be a family of finite abelian groups, with character groups Ĝi,
and put G =

∏n
i=1Gi. Let S : G → C. An element of (gi) ∈ G is called primitive

if gi ̸= 0 for each i. Let Ωi ⊆ Ĝi and let αi be such that

#Ωi ≤ αi ·#Ĝi

and 0 < αi ≤ 1. Finally, assume that S is such that the Fourier coefficients of S
are supported on

∏n
i=1 Ωi.

Lemma 9.10 ([Ser08, Lemma 10.2.1]). We have∑
g∈G

g primitive

|S(g)|2 ≥ |S(0)|2
∏(

1− αi

αi

)
,

where 0 is the identity of G.

Fix positive integers N and K and f ∈ F∞. Let X be a subset of A. Now take
m′

1D > 2K + 2g − 2 and m2D ≥ N .
For each prime ideal p of A fix αp such that

|Xp| ≤ αp · |A/p|,

Xp being the image of the canonical map X ↪→ A → A/p. Let SK denote set of
square-free ideals in A which have degree at most K.

We have the following large sieve inequality.

Theorem 9.11 ([Hsu99, Theorem 3.2]).

|I(f,−m2) ∩X| · CK ≤ rD(m0+1),

where

m0 = sup{m′
1,m2},

and

CK = 1 +
∑
a∈SK

∏
p|a

(
1− αp

αp

)
.
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Proof. For each ideal A of A, denote by T[A], the A torsion elements of T. That is,

T[A] = A−1C−1/C−1.

Let {ui} be the union of T[A] as A ∈ SK . If ui ̸= uj with ui ∈ T[A] and
uj ∈ T[B] then

0 ̸= ui − uj ∈ T[AB] = (ABC)−1/C−1

and so ui − uj ∈ L(A +B + C − n∞) for some n with ord∞(ui − uj) = n. Since
ui − uj ̸= 0 we have degA+ degB+ deg C − nD ≥ 0 that is,

nD ≤ 2K + 2g − 2.

This proves that {uj} is a m′
1-space.

Define

S(u) =
∑

x∈I(f,−m2)∩X

Tx(u),

and by [Hsu99, Theorem 2.6], we get∑
|S(ui)|2 ≤ rD(m0+1) ·#(I(f,−m2) ∩X).

Now fix A ∈ SK and apply [Ser08, Lemma 10.2.1], to the following families

{Gi} = {T[P] | P prime ,P|A}

{Ωi} = {(I(f,−m2) ∩X)P | P prime,P|A}
{αi} = {αP | P prime,P|A}.

So we get ∑
u∈T[A]

u is primitive

|S(u)|2 ≥ |S(0)|2
∏

P prime
P|A

(
1− αP

αP

)
.

Summing over all possible A ∈ SK and noticing that each ui is primitive for
exactly one A gives the formula∑

|S(ui)|2 ≥ |S(0)|2CK = #(I(f,−m2) ∩X)2 · CK .

Therefore,

CK ·#(I(f,−m2) ∩X)2 ≤
∑

|S(ui)|2 ≤ rD(m0+1)#(I(f,−m2) ∩X),

giving

CK ·#(I(f,−m2) ∩X) ≤ rD(m0+1),

as was to be shown. □

Put ϕ(A) = |(A/A)×|, and µ(A) = (−1)n if A is the product of n distinct prime
ideals, and 0 otherwise. The zeta function of the curve X is the sum

Z(t) =
∑
D

tdegD =
∏
P∈X

(1− tdegP)−1,

taken over positive divisors of X. We have that

Z(t) =
L(t)

(1− t)(1− rt)
,

where L(t) is a polynomial of degree 2g, see [Ros02].
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Proposition 9.12 ([Hsu99, Lemmas 4.1 and 4.2]). Suppose that K ≥ 2g +D − 1.
Then ∑

deg a≤K

(|A/a|)−1 ≥ (K − 2g −D + 2)L(1/r)(1− r−D)/(1− r−1),

and ∑
a∈SK

(ϕ(a))−1 ≥ (K − 2g −D + 2)L(1/r)(1− r−D)/(1− r−1).

If U is an ideal of A and K + degU ≥ 2g +D − 1 then

∑
a∈SK

(a,U)=1

ϕ(a)−1 ≥ ϕ(U)

|A/U|
(K + degU− 2g −D + 2)L(1/r)(1− r−D)/(1− r−1).

Proof. The generating function for ideals of A is

(1− tD)L(t)

(1− t)(1− rt)
= (1 + t+ · · ·+ tD−1)L(t)/(1− rt) = F (t)/(1− rt),

where F is a polynomial.
If the coefficient of tj in F (t) is fj then the coefficient of tj in F (t)/(1− rt) is

j∑
k=0

fkr
j−k.

If j ≥ degF then this coefficient becomes

rjF (1/r).

As degF = 2g +D − 1, and taking K ≥ 2g +D − 1
Therefore,∑

deg a≤K

|A/a|−1 ≥
K∑

j=2g+D−1

F (1/r) = (K − (2g +D − 1) + 1)F (1/r)

= (K − 2g −D + 2)L(1/r)(1− r−D)/(1− r−1).

Since ϕ(a) ≤ |A/a| we get∑
a∈SK

1

ϕ(a)
≥ (K − 2g −D + 2)L(1/r)(1− r−D)/(1− r−1).

Now, ∑
(a,U)=1,a∈SK

1

ϕ(a)
· |A/a|
ϕ(A)

≥
∑

deg a≤K

|A/a|−1

= L(1/r)(K − 2g −D + 2)(1− r−D)/(1− r−1),

as long as K ≥ D + 2g − 1. □

Now, let U = (u) be a principal ideal of A. Let b ∈ A be such that (b)+ (u) = 1.
Let π(N ; b,U) be the number of prime ideals of the form (P ) such that P ≡ b
mod U. Then let S(N ; b,U) be the set of elements c of A such that (cu+ b) is prime
and deg c = N − degU. Notice that for this choice of U, we must have that degU
and degP are multiples of D, and so N must also be a multiple of D if S(N ; b,U)
is to be non-empty. Therefore, put N − degU = Dm2.
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Now, we will establish Theorem 9.2 in the case where U is a principal ideal.

Theorem 9.13. Let U = (u) be a principal ideal of A. Let b ∈ A be such that
(b) + (u) = 1. Suppose N > degU+ 3D + 6g − 2, N > deg b, then

π(N ; b,U) ≤ 2(1− r−1)rDrN

ϕ(U)(N − degU− 3D − 6g + 4)L(1/r)
.

Proof. As long as deg b < N , we have π(N ; b,U) ≤ |S(N ; b,U)|. And there is a
natural map

S(N ; b,U) → S(N ; b,U)p

if p is a prime of A with deg p < N and p ∤ U.
Furthermore, if p ∤ U then cu+ b ̸= 0 modulo p and so c ̸= −b/u modulo p since

p is coprime to U. Therefore

|S(N ; b,U)p| ≤ αp|A/p|

with αp = ϕ(p)/|A/p| for each p with p ∤ U.
Now, notice that

S(N ; b,U) ⊆
⋃

ζ∈F×
∞

I(ζπ−m2 ,−m2 + 1),

where m2D = N − degU.
So putting Z = S(N ; b,U) we see

Z =
⋃
ζ

(Z ∩ I(ζπ−m2 ,−m2 + 1))

and so

|Z| ≤ (rD − 1)(rD(m0+1))/CK

where

m0 = sup(m1,m2 − 1),

with

m1D > 2K + 2g − 2,

m2D = N − degU.

Recall that CK satisfies

CK = 1 +
∑
a∈SK

∏
p|a

(1− αp)/αp

=
∑
a∈SK

(a,U)=1

1

ϕ(a)

≥ ϕ(U)

|A/U|
(K − 2g −D + 2)L(1/r)(1− r−D)/(1− r−1),

for K ≥ 2g +D − 1.
So choose K as large as possible under the restriction m1 ≤ m2 − 1. That is,

Dm1 = Dm2 −D = N − degU−D

so take K such that

2K + 2g − 2 < N − degU−D,
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or
N − degU−D − 2g

2
≤ K <

N − degU+ 2−D − 2g

2
.

We also need K ≥ 2g +D − 1 which implies that

2g +D − 1 ≤ N/2− degU/2−D/2− g

so

N ≥ 6g + 3D + degU− 2.

Under these conditions

(K − 2g −D + 2) =
2K − 4g − 2D + 4

2

≥ N − degU−D − 2g − 4g − 2D + 4

2

=
N − degU− 3D − 6g + 4

2

And with this choice of K we have D(m0 + 1) = Dm2 = N − degU so

|Z| ≤ 2(1− r−1)(rD − 1)rN

ϕ(U)(N + degU− 3D − 6g + 4)(1− r−D)L(1/r)

=
2(1− r−1)rDrN

ϕ(U)(N − degU− 3D − 6g + 4)L(1/r)
,

as required. □

Now suppose a is not principal. We will now prove the main theorem of the
section.

Theorem 9.2. Suppose N ≥ deg a+ 4D+ 7g − 4 and N is larger than some fixed
constant. Then

π(N ; b, a) ≤ 2(1− r−1)rDrN

φ(a) · (N − deg a− 7g − 4D + 6) · L(1/r)
.

Proof. The elements of a correspond to L(k∞− a) as k tends to infinity. By the
Riemann-Roch theorem, there is an element u ∈ a with deg u ≤ deg a+ g +D − 2.
For each equivalence class b′ modulo (u) with b′ ≡ b modulo a, the previous theorem
tells us that

π(N ; b′, (u′)) ≤ 2(1− r−1)rDrN

ϕ((u))(N − degU− (g +D − 2)− 3D − 6g + 4)L(1/r)
.

There are ϕ((u))/ϕ(a) such equivalence classes, and as long as N is large enough
any prime which satisfies P ≡ b modulo a also satisfies P ≡ b′ modulo (u) for some
b′. This gives the bound

π(N ; b, a) ≤ 2(1− r−1)rDrN

ϕ(a)(N − deg a− 7g − 4D + 6)L(1/r)
,

as required. □

Remark 9.14. This theorem is sufficient for our use, but one may further bound
the number of prime ideals of the form (P ) with sgn(P ) = c and P ≡ b mod a.
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10. Further work

The following problems may be addressed in the future. We may consider trying
to extend the main theorem of this paper to this case when B = EndKsep(ϕ) ⊊ Oκ.
You may consider this as an analogue to the work of Chen and Yu [CY05].

We can also consider extending the work of Gupta and Murty in [GM86] to the
case when E is an elliptic curve over a number field K with complex multiplication
by an order B in a quadratic imaginary extension of Q. In this case, the class
number of B need not be 1. By letting K ′ be a field over which the elements of B
are defined, E(K ′) becomes a B-module, and considering the extensionsK ′(q−1⟨a⟩)
makes generalizing Gupta and Murty’s results to this situation seem reasonable.
There are, of course, other problems that need to be dealt with in this situation.
This will be the topic of future work.

The focus of this paper is when ϕ is of rank 2. We may consider the case when
the rank of ϕ is 3 or higher, and ϕ has endomorphism ring as large as possible.
That is, B = EndKsep(ϕ) and that is ψ : B → K{τ} is of rank 1.

We can also try to generalize the work of the authors in [KT15] to the case when
A is not the ring Fq[T ]. Particularly useful would be the Kummer theory results,
discriminant bounds, and the Brun-Titchmarsh theorem. These could also be used
to generalize the results obtained by Kuan, Yao, and the first author in [KKY15],
or other similar theorems of this type.

Finally, one may work through Section 9 with the restriction sgn(P ) = c (see
Remark 9.14).
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